精选优质文档-倾情为你奉上重要不等式专题讲座解答不等式问题往往没有固定的模式,证法因题而异,多种多样,不等式问题的趣味性和灵活性决定了它在数学竞赛中的地位。当然,熟悉并掌握一些常用的解决不等式问题的方法技巧是很有必要的,除比较法、放缩法、反证法、分析法、综合法等基本方法外,数学归纳法、变量代换(含局部、整体、三角、复数代换等)、函数方法(利用单调性、凸性、有界性及判别方法等)、构造法(构造恒等式、数列、函数等)、调整法等在数学竞赛中也是常用的。要多做题,多总结,融会贯通,举一反三,才能提高解决、研究不等式问题的能力.一. 有关结论1、平均值不等式设是非负实数,则2、柯西(Cauchy)不等式设,则等号成立当且仅当存在,使上述两个不等式在数学竞赛中应用极为广泛,好的、难的不等式问题往往只需用它们即可解决,而无需过分追求所谓更“高级”的不等式,这是需要注意的。3排序不等式设是的一个排列,令.则证: 若,由.设,则可见按上述方法调整后,的值不增,若此时在中,仿上又可得,最多经过步调整以后,若在中,将其中的与互换