精选优质文档-倾情为你奉上1. 证明:的充要条件是.证明:若,则,故成立. 反之,若,则,又,若,则,若,则.总有.故,从而有。 证毕2. 证明.证明:,从而,故,从而,所以.另一方面,必有,故,从而,所以.综合上两个包含式得. 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9.证明:定理4中的(3):若(),则.证:若,则对任意的,有,所以()成立知,故,这说明.定理4中的(4):.证:若,则有,使 .反过来,若则或者.不妨设,则有使.故.综上所述有.定理6中第二式.证:,则,故存在 ,所以从而有.反过来,若,则使,故,从而. 证毕定理9:若集合序列单调上升,即(相应地)对一切都成立,则 (相应地).证明:若对成立,则.故从定理8知另一方面,令,从对成立知.故定理8表明故.4. 证明的充要条件是.证:充分性 若,则必要性 若,而则存在.所以即所以这与矛盾,所以.4.
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。