精选优质文档-倾情为你奉上高中数学函数单调性的判断方法单调性是函数的重要性质,它在数学中有许多应用,如我们常用求函数单调性的方法求函数的值域。那么,有哪些求函数单调性的方法呢?方法一:定义法对于函数f(x)的定义域I内某个区间A上的任意两个值(1)当时,都有,则说f(x)在这个区间上是增函数;(2)若当时,都有,则说f(x) 在这个区间上是减函数。例如:根据函数单调性的定义,证明:函数 在 上是减函数。要证明函数f(x)在定义域内是减函数,设任意,则, ,且在与中至少有一个不为0,不妨设,那么,故 在 上为减函数。方法二:性质法除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B上具有单调性,则在区间B上有:1. f(x)与cf(x)当c0具有相同的单调性,当c0具有相反的单调性;2.当f(x)、g(x)都是增(减)函数,则f(x)g(x)都是增(减)函数;3.当f(x)、g(x)都是增(减)函数,则f(x)g(x)当两者都恒大于0时也是增(减)函数,当两者