精选优质文档-倾情为你奉上三重积分1将I=分别表示成直角坐标,柱面坐标和球面坐标下的三次积分,并选择其中一种计算出结果其中是由曲面z=及z=x+y所围成的闭区域.分析为计算该三重积分,我们先把积分区域投影到某坐标平面上,由于是由两张曲面及,而由这两个方程所组成的方程组 极易消去z,我们把它投影到xoy面上然后,为在指定的坐标系下计算之,还应该先把的边界曲面用相应的坐标表示,并找出各种坐标系下各个变量的取值范围,最后作代换即可解 将投影到xoy平面上,由消去z得 (x+y)=2-(x+y),或(x+y+2)(x+y-1)=0,于是有 x+y=1即知,在xoy平面上的投影为圆域D:x+y1 为此在D内任取一点Q(x,y),过Q作平行于z轴的直线自下而上穿过穿入时碰到的曲面为,离开时碰到的曲面为(不画图,仅用代数方法也易判断),这是因为x+y1)(1) 直角坐标系下,我们分直角坐标及柱面坐标,下边找z的变化范围从而化为三重积分因此再由D:x+y1,有,于是在直角坐标下,可表示为:于是有I=.(2) 柱面坐标下首先把