精选优质文档-倾情为你奉上构造全等三角形证题 在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。现分类加以说明。一、延长中线构造全等三角形例1. 如图1,AD是ABC的中线,求证:ABAC2AD。证明:延长AD至E,使ADDE,连接CE。如图2。AD是ABC的中线,BDCD。又12,ADDE,ABDECD(SAS)。ABCE。在ACE中,CEACAE,ABAC2AD。二、沿角平分线翻折构造全等三角形例2. 如图3,在ABC中,12,ABC2C。求证:ABBDAC。证明:将ABD沿AD翻折,点B落在AC上的E点处,即:在AC上截取AEAB,连接ED。如图4。12,ADAD,ABAE,ABDAED(SAS)。BDED,ABCAED2C。而AEDCEDC,CEDC。所以ECEDBD。ACAE
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。