精选优质文档-倾情为你奉上第9讲 面积计算一、知识要点对于一些比较复杂的组合图形,有时直接分解有一定的困难,这时,可以通过把其中的部分图形进行平移、翻折或旋转,化难为易。有些图形可以根据“容斥问题“的原理来解答。在圆的半径r用小学知识无法求出时,可以把“r2”整体地代入面积公式求面积。二、精讲精练【例题1】如图所示,求图中阴影部分的面积。【思路导航】解法一:阴影部分的一半,可以看做是扇形中减去一个等腰直角三角形(如图),等腰直角三角形的斜边等于圆的半径,斜边上的高等于斜边的一半,圆的半径为20210厘米3.141021/410(102)2107(平方厘米)答:阴影部分的面积是107平方厘米。解法二:以等腰三角形底的中点为中心点。把图的右半部分向下旋转90度后,阴影部分的面积就变为从半径为10厘米的半圆面积中,减去两直角边为10厘米的等腰直角三角形的面积所得的差。(202)21/2(202)21/2107(平方厘米)答:阴影部分的面积是107平方厘米。练习1:1如图所示,求阴影