精选优质文档-倾情为你奉上主成分分析:利用降维(线性变换)的思想,在损失很少信息的前提下把多个指标转化为几个综合指标(主成分),用综合指标来解释多变量的方差- 协方差结构,即每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能(主成分必须保留原始变量90%以上的信息),从而达到简化系统结构,抓住问题实质的目的综合指标即为主成分。求解主成分的方法:从协方差阵出发(协方差阵已知),从相关阵出发(相关阵R已知)。(实际研究中,总体协方差阵与相关阵是未知的,必须通过样本数据来估计)注意事项:1. 由协方差阵出发与由相关阵出发求解主成分所得结果不一致时,要恰当的选取某一种方法;2. 对于度量单位或是取值范围在同量级的数据,可直接求协方差阵;对于度量单位不同的指标或是取值范围彼此差异非常大的指标,应考虑将数据标准化,再由协方差阵求主成分;3.主成分分析不要求数据来源于正态分布;4. 在选取初始变量进入分析时应该特别注意原始变量是否存在多重共线性的问题(最小特征根接近于零,说明存在多重共线性问题)。优点:首先它利用降维技术