1、0风力发电系统电气控制设计摘要风力发电系统电气控制技术是风力发电在控制领域的关键技术。风力发电机组控制系统工作的安全可靠性已成为风力发电系统能否发挥作用,甚至成为风电场长期安全可靠运行的重大问题。在实际应用过程中,尤其是一般风力发电机组控制与检测系统中,控制系统满足用户提出的功能上的要求是不困难的。往往不是控制系统功能而是它的可靠性直接影响风力发电机组的声誉。有的风力发电机组控制系统的功能很强,但由于工作不可靠,经常出故障,而出现故障后对一般用户来说维修又十分困难,于是这样一套控制系统可能发挥不了它应有的作用。因此对于一个风力发电机组控制系统的设计和使用者来说,系统的安全可靠性必须认真加以考虑
2、,必须引起足够的重视。我们的目的是希望通过控制系统的设计,采取必要的手段使我们的系统在规定的时间内不出故障或少出故障,并且在出故障之后能够以最快的速度修复系统,使之恢复正常工作。关键词 : 风力发电的基本原理; 风力发电机的基础理论 ; 风力发电控制系统; 风轮机的气动特性; 变桨距控制系统。11 绪论1.1 国内外风力发电的现状与发展趋势风能属于可再生能源,具有取之不尽、用之不竭、无污染的特点。人类面临的能源、环境两大紧迫问题使风能的利用日益受到重视。我国的风能资源丰富,可利用的潜能很大,大力发展风、水电是我国长期的能源政策。而其中风电是可再生能源中最具发展潜力和商业开发价值的能源方式。从
3、20 世纪 80 年代问世的现代并网风力发电机组,只经过 30 多年的发展,世界上已有近 50 个国家开发建设了风电场(是前期总数的 3 倍),2002年底,风电场总装机容量约 31128 兆瓦(是前期总数的 300 倍)。2005 年以来,全球风电累计装机容量年平均增长率为 27.3%,新增装机容量年平均增长率为 36.1%,保持着世界增长最快能源的地位。2010 年全球装机容量达196630MW,新装机容量 37642MW,比去年同期增长 23.6%。目前,德国、西班牙和意大利三国的风电机组的装机容量约占到欧洲总量的 65%。近年来,在欧洲大力发展风电产业的国家还有法国、英国、葡萄牙、丹麦
4、、荷兰、奥地利、瑞典、爱尔兰。欧洲之外,发展风电的主要国家有美国、中国、印度、加拿大和日本。迄今为止,世界上已有 82 个国家在积极开发和应用风能资源。海上风力资源条件优于陆地,将风电场从陆地向近海发展在欧洲已经成为一种新的趋势。有人把风电的发展规划为 3 步曲,陆上风电技术(当前技术)一近海风电技术(正研发技术)一海上风电技术(未来发展方向) 。2010 年北美的装机容量有显著下降,美国年度装机容量首度不及中国;多数西欧国家风能发展处于饱和阶段,但风能产业在东欧国家得到显著发展;非洲风能发展主要集中在北非。随着海上风电的迅速发展,单机容量为 3 -6MW 的风电机组已经开始进行商业化运行。美
5、国 7MW 风电机组已经研制成功,正在研制 10MW 机组;英国 10MW 机组也正在进行设计,挪威正在研制 14MW 的机组,欧盟正在考虑研制 20MW 的风电机组,全球各主要风电机组制造厂家都在为未来更大规模的海上风电场建设做前期开发。1.1.1 世界上风力发电的现状近年来,世界风电发展持续升温,速度加快。现主要以德国、西班牙、丹麦和美国的一些公司为代表,大规模地促进了风电产业化和风机设备制造业的发展。经过四、五年时间的整合,国际上风机制造业大约有十几家比较好的大企业。2003 年底,全世界风电是 3800 万千瓦左右,而 2003 年一年就增加了 400 多万千瓦,仅德国到 2003 年
6、底的装机容量就有 1600 万千瓦,其次是西班牙、美国、丹麦等国。国外风电的发展趋势,一是发展速度加快,二是风机机组从小型化向大型化发展,海上风电厂是下一步发展的主流。全世界风力发电总装机容量:1981 年为 105 万 kW,1994 年为 350 万 kW,1995 年达到2490 万 kW,1996 年底为 607 万 kW,1997 年升至 780 万 kW,1998 年已达到 968.9 万kW,2000 年 5 月已超过 1429 万 kWa 德国风力发电在装机容量方面居于世界领先地位,2000 年 5 月已达到 4635 万 kW;丹麦是开发风电最早的国家,而且当前在风力发电技术
7、和生产方面等仍处于领先地位,全国装机容量 148 万 kW,占发电总装机容量的 5%以上。国际上许多国家都制定了新世纪的风力发电计划,欧洲风能协会己制定出 2020 年欧洲风能装机容量 1.0X lOSMW 的目标,并写入了欧共体关于可再生能源的白皮书;欧洲风能委员会 CEWER)对 I99I 年欧洲风能发展目标作了修改,新的 EWEA 目标是: 欧洲风力发电机装机容量到 2000 年约为 8000MW,2010 年为 100000MW。欧洲风能协会和丹麦能源与发展论坛的研究报告表明:在 20 年内风力发电可以满足世界电力需求量的 10%。1.1.2 我国风力发电的现状风能资源作为一种可再生能
8、源取之不尽,中国更是风能大国,据统计中国风能的技术开发量可达 3 亿千瓦-6 亿千瓦,而且中国风能资源分布集中,有利于大规模的开发和利用。据考察中国的风能资源主要集中在两个带状地区,一条是“三北(东北、华北、西北)地区丰富带”即西北、华北和东北的草原和戈壁地带;另一条是“沿海及其岛屿地丰富带” ,即东部和东南沿海及岛屿地带。这些地区一般都缺少煤炭等常规能源并且在时间上冬春季风大、降雨量少,夏季风小、降雨量大,而风电正好能够弥补火电的缺陷并与水电的枯水期和丰水期有较好的互补性。80 年代初,200 千瓦风机的研制开发工作开始实施。从 90 年代初期在山东容城建设了第一个商业化风力发电厂,到 20
9、10 年底,中国以约 4182.7 万千瓦的累积风电装机容量首次超越美国位居世界第一,较 2009 年同比大增 62%。按照国家电网此前出具的研究报告,到 2015 年,电网覆盖范围内可吸纳风电上网的规模达 1 亿千瓦,到 2020 年可达 1.5 亿千瓦。受国际风电发展大型化趋势的驱使,国内风电机组技术取得了不俗的成果。2005 年,中国风电场新安装的 MW 级风电机组(1MW )仅占当年新增装机容量的 21.5%。随着国内企业 MW 级风电机组产量的增加,2007 年 MW 级风电机组的装机容量占到当年新增市场的 51%,2008 年占到 72.8%,2009年占到 86.8%。2009
10、年中国在多 MW 级(2MW)风电机组研制方面取得新的成果,如金风科技股份有限公司研制的 2.5MW 和 3MW 的风电机组已在风电场投入试运行;华锐风电科技股份有限公司研制的 3MW 海上风电机组已在东海大桥海上风电场并网发电;由沈阳工业大学研制的 3MW 风电机组也已经成功下线。此外,中国华锐、金风、东汽、海装、湘电等企业已开始研制单机容量为 5MW 的风电机组。中国开始全面迈进多 MW 级风电机组研制的领域。2010 年,国际上公认中国很难建成自主化的海上风电项目,然而,华锐风电科技集团中标的上海东海大桥项目,用完全中国自主的技术和产品,用两年的时间实现了装机,并于 2010 年成功投产
11、运营,令世界风电行业震惊。 报告预测,2013 年,中国风电装机量很可能达到 16.6 千兆瓦,在 2014 年达到 17 千兆瓦,2015 年达到 18 千兆瓦。按照这个增长速度,中国在 2015 年末风电并网装机达到1 亿千瓦的目标将提前一年实现。风力发电系统电气控制技术是风力发电在控制领域的关3键技术。1.1.3 论文主要内容的简介风力发电机组控制系统工作的安全可靠性已成为风力发电系统能否发挥作用,甚至成为风电场长期安全可靠运行的重大问题。在实际应用过程中,尤其是一般风力发电机组控制与检测系统中,控制系统满足用户提出的功能上的要求是不困难的。往往不是控制系统功能而是它的可靠性直接影响风力
12、发电机组的声誉。有的风力发电机组控制系统的功能很强,但由于工作不可靠,经常出故障,而出现故障后对一般用户来说维修又十分困难,于是这样一套控制系统可能发挥不了它应有的作用。因此对于一个风力发电机组控制系统的设计和使用者来说,系统的安全可靠性必须认真加以考虑,必须引起足够的重视。我们的目的是希望通过控制系统的设计,采取必要的手段使我们的系统在规定的时间内不出故障或少出故障,并且在出故障之后能够以最快的速度修复系统,使之恢复正常工作。42 风力发电系统的基本原理2.1 风力发电的基本原理2.1.1 风力发电的基本原理风能具有一定的动能,通过风轮机将风能转化为机械能,拖动发电机发电。风力发电的原理是利
13、用风带动风车叶片旋转,再通过增速器将旋转的速度提高来促使发电机发电的。依据目前的风车技术,大约 3m/s 的微风速度便可以开始发电。风力发电的原理说起来非常简单,最简单的风力发电机可由叶片和发电机两部分构成如图 1-1 所示。空气流动的动能作用在叶轮上,将动能转换成机械能,从而推动片叶旋转,如果将叶轮的转轴与发电机的转轴相连就会带动发电机发出电来。2.1.2 风力发电的特点(1)可再生的洁净能源风力发电是一种可再生的洁净能源,不消耗化石资源也不污染环境,这是火力发电所无法比拟的优点。(2)建设周期短一个十兆瓦级的风电场建设期不到一年。(3)装机规模灵活可根据资金情况决定一次装机规模,有一台资金
14、就可以安装一台投产一台。(4)可靠性高把现代高科技应用于风力发电机组使其发电可靠性大大提高,中、大型风力发电机组可靠性从 80 年代的 50%提高到了 98%,高于火力发电且机组寿命可达 20 年。(5)造价低从国外建成的风电场看,单位千瓦造价和单位千瓦时电价都低于火力发电,和常规能源发电相比具有竞争力。我国由于中大型风力发电机组全部从国外引进,造价和电价相对比火力发电高,但随着大中型风力发电机组实现国产化、产业化,在不久的将来风力发电的造价和电价都将低于火力发电。(6)运行维护简单现代中大型风力发电机的自动化水平很高,完全可以在无人职守的情况下正常工作,5只需定期进行必要的维护,不存在火力发
15、电的大修问题。(7)实际占地面积小发电机组与监控、变电等建筑仅占火电厂 1%的土地,其余场地仍可供农、牧、渔使用。(8)发电方式多样化风力发电既可并网运行,也可以和其他能源如柴油发电、太阳能发电、水利发电机组形成互补系统,还可以独立运行,因此对于解决边远地区的用电问题提供了现实可行性。(9)单机容量小由于风能密度低决定了单台风力发电机组容量不可能很大,与现在的火力发电机组和核电机组无法相比。另外风况是不稳定的,有时无风有时又有破坏性的大风,这都是风力发电必须解决的实际问题。2.2 风资源及风轮机概述2.2.1 风资源概述(1)风的起源风的形成乃是空气流动的结果。风就是水平运动的空气,空气运动主
16、要是由于地球上各纬度所接受的太阳辐射强度不同而形成的。大气的流动也像水流一样,是从压力高处往压力低处流,太阳能正是形成大气压差的原因。由于地球自转轴与围绕太阳的公转轴之间存在 665的夹角,因此对地球上不同地点太阳照射角度是不同的,而且对同一地点一年中这个角度也是变化的。地球上某处所接受的太阳辐射能与该地点太阳照射角的正弦成正比。(2)风的参数风向和风速是两个描述风的重要参数。风向是指风吹来的方向,如果风是从东方吹来就称为东风。风速是表示风移动的速度即单位时间内空气流动所经过的距离。风速是指某一高度连续 10min 所测得各瞬时风速的平均值。一般以草地上空 10m 高处的 10min 内风速的
17、平均值为参考。风玫瑰图是一个给定地点一段时间内的风向分布图。通过它可以得知当地的主导风向。(3)风能的基本情况 1风能的特点 1风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。 6风能资源的估算 2风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风功率为(1-1)30.5V式中 为风能(w);为空气密度(kg/m );为风速(m/s)。v由于风速是一个随机性很大的量,必须通过一段时间的观测来了解它的平均状况,一个地方风能潜力的多少要视该地常年平均风能密度
18、的大小。因此需要求出在一段时间内的平均风能密度,这个值可以将风能密度公式对时间积分后平均来求得。在风速 V 的概率分布 p(V)知道后,平均风能密度还可根据下式求得(1-2)30.5()VPd2.2.2 风轮机的理论 4风轮机又称为风车,是一种将风能转换成机械能、电能或热能的能量转换装置。风轮机的类型很多通常将其分为水平轴风轮机垂直轴风轮机和特殊风轮机三大类。但应用最广的还是前两种类型的风轮机。2.3 风力发电机的结构与组成2.3.1 风力发电机的分类 5风力发电机组是将风能转化为电能的装置,按其容量分可分为:小型(10kw 以下) 、中型(10100kw)和大型(100kw 以上)风力发电机
19、组。按主轴与地面相对位置又可分为:水平轴风力发电机组和垂直轴风力发电机组。水平轴风力发电机是目前世界各国风力发电机最为成功的一种形式,主要优点是风轮可以架设到离地面较高的地方,从而减少了由于地面扰动对风轮动态特性的影响。它的主要机械部件都在机舱中,如主轴、齿轮箱、发电机、液压系统及调向装置等。而生产垂直轴风力发电机的国家很少,主要原因是垂直轴风力发电机效率低,需启动设备,同时还有些技术问题尚待解决。在本文中以后不做特殊说明时所指的风力发电机组即为大中型的水平轴风力发电机组。2.3.2 水平轴风力发电机的结构大中型风力发电机组是由叶片、轮毂、主轴、增速齿轮箱、调向机构、发电机、塔架、控制系统及附
20、属部件(机舱机座回转体制动器等)组成的。(1)机舱机舱包含着风力发电机的关键设备,包括齿轮箱、发电机等。(2)风轮7叶片安装在轮毂上称作风轮,它包括叶片、轮毂、主轴等。风轮是风力发电机接受风能的部件。叶片是风力发电机组最关键的部件,现代风力发电机上每个转子叶片的测量长度大约为 20 米叶片数通常为 2 枚或 3 枚,大部分转子叶片用玻璃纤维强化塑料(GRP)制造。叶片可分为变浆距和定浆距两种叶片,其作用都是为了调速,当风力达到风力发电机组设计的额定风速时,在风轮上就要采取措施,以保证风力发电机的输出功率不会超过允许值。轮毂是连接叶片和主轴的零部件。轮毂一般由铸钢或钢板焊接而成,其中不允许有夹渣
21、、砂眼、裂纹等缺陷,并按桨叶可承受的最大离心力载荷来设计。主轴也称低速轴,将转子轴心与齿轮箱连接在一起,由于承受的扭矩较大,其转速一般小于 50r/min,一般由 40Cr 或其他高强度合金钢制成。(3)增速器增速器就是齿轮箱,是风力发电机组关键部件之一。由于风轮机工作在低转速下,而发电机工作在高转速下,为实现匹配采用增速齿轮箱。使用齿轮箱可以将风电机转图 1.28子上的较低转速、较高转矩转换为用于发电机上的较高转速、较低转矩。(4)联轴器增速器与发电机之间用联轴器连接,为了减少占地空间,往往联轴器与制动器设计在一起。(5)制动器制动器是使风力发电机停止转动的装置,也称刹车。(6)发电机发电机
22、是风力发电机组中最关键的部件,是将风能最终转变成电能的设备。发电机的性能好坏直接影响整机效率和可靠性。大型风电机(100-150 千瓦)通常产生 690 伏特的三相交流电。然后电流通过风电机旁的变压器(或在塔内),电压被提高至 1-3 万伏,这取决于当地电网的标准。风力发电机上常用的发电机有以下几种: 直流发电机,常用在微、小型风力发电机上。 永磁发电机,常用在小型风力发电机上。现在我国已经发明了交流电压440/240V 的高效永磁交流发电机,可以做成多对极低转速的,特别适合风力发电机。 同步或异步交流发电机,它的电枢磁场与主磁场不同步旋转,其转速比同步转速略低,当并网时转速应提高。(7)塔架
23、塔架是支撑风力发电机的支架。塔架有型钢架结构的,有圆锥型钢管和钢筋混凝土的等三种形式,风电机塔载有机舱及转子。(8)调速装置风速是变化的,风轮的转速也会随风速的变化而变化。为了使风轮运转所需要额定转速下的装置称为调速装置,调速装置只在额定风速以上时调速。目前世界各国所采用的调速装置主要有以下几种:可变浆距的调速装置; 1定浆距叶尖失速控制的调速装置; 2离心飞球调速装置; 3空气动力调速装置; 4扭头、仰头调速装置。 5(9)调向(偏航)装置调向装置就是使风轮正常运转时一直使风轮对准风向的装置。借助电动机转动机舱以使转子正对着风。偏航装置由电子控制器操作,电子控制器可以通过风向标来感觉风9向。
24、通常在风改变其方向时,风电机一次只会偏转几度。(10)风力发电机微机控制系统 11风力发电机的微机控制属于离散型控制,是将风向标、风速计、风轮转速、发电机电压、频率、电流、发电机温升、增速器温升、机舱振动、塔架振动、电缆过缠绕、电网电压、电流、频率等传感器的信号经 A/D 转换,输送给单片机再按设计程序给出各种指令实现自动启动、自动调向、自动调速、自动并网、自动解列、运行中机组故障的自动停机、自动电缆解绕、过振动停机、过大风停机等的自动控制。自我故障诊断及微机终端故障输出需维修的故障,由维修人员维修后给微机以指令,微机再执行自动控制程序。风电场的机组群可以实现联网管理、互相通信,出现故障的风机会在微机总站的微机终端和显示器上读出、调出程序和修改程序等,使现代风力发电机真正实现了现场无人职守的自动控制。(11)电缆扭缆计数器电缆是用来将电流从风电机运载到塔下的重要装置。但是当风电机偶然沿一个方向偏转太长时间时,电缆将越来越扭曲,导致电缆扭断或出现其他故障。因此风力发电机配备有电缆扭曲计数器,用于提醒操作员应该将电缆解开了。风力发电机还会配备有拉动开关在电缆扭曲太厉害时被激发,断开装置或刹车停机,然后解缆。