精选优质文档-倾情为你奉上余弦定理的八种证明方法研究背景: 2011年高考数学卷(陕西卷)考出了“说明并证明余弦定理”这个考题,使平时不注重翻阅课本的同学大部分吃了亏,虽然这是书本上的知识,且课本上只给出了一种证明方法,但仍让同学们很难想到会考这个证明题,因此我们利用这次研究性学习活动,以论文的方式来介绍一下多种余弦定理的证明方法,来增强我们对课本知识的理解。目的意义:用多种方法证明余弦定理,扩展思维,了解更多的过程。内容摘要:定理是揭示边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形便可适当移于其它知识。成果展示:一 余弦定理的内容对于任意三角形,任何一边的等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质a = b + c- 2bccosA b = a + c - 2accosB c = a + b - 2abcosC 二 证明方法方法一:平面几何法