余弦定理的八种证明方法(共6页).docx

上传人:晟*** 文档编号:8410621 上传时间:2021-11-21 格式:DOCX 页数:6 大小:150.46KB
下载 相关 举报
余弦定理的八种证明方法(共6页).docx_第1页
第1页 / 共6页
余弦定理的八种证明方法(共6页).docx_第2页
第2页 / 共6页
余弦定理的八种证明方法(共6页).docx_第3页
第3页 / 共6页
余弦定理的八种证明方法(共6页).docx_第4页
第4页 / 共6页
余弦定理的八种证明方法(共6页).docx_第5页
第5页 / 共6页
点击查看更多>>
资源描述

精选优质文档-倾情为你奉上余弦定理的八种证明方法研究背景: 2011年高考数学卷(陕西卷)考出了“说明并证明余弦定理”这个考题,使平时不注重翻阅课本的同学大部分吃了亏,虽然这是书本上的知识,且课本上只给出了一种证明方法,但仍让同学们很难想到会考这个证明题,因此我们利用这次研究性学习活动,以论文的方式来介绍一下多种余弦定理的证明方法,来增强我们对课本知识的理解。目的意义:用多种方法证明余弦定理,扩展思维,了解更多的过程。内容摘要:定理是揭示边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形便可适当移于其它知识。成果展示:一 余弦定理的内容对于任意三角形,任何一边的等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质a = b + c- 2bccosA b = a + c - 2accosB c = a + b - 2abcosC 二 证明方法方法一:平面几何法

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 表格模板

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。