精选优质文档-倾情为你奉上2015年高考专题系列:函数与导数 函数导数的内容在历年高考中主要集中在切线方程、导数的计算,利用导数判断函数的单调性、极值、最值等问题,以及与不等式、三角函数、数列、立体几何、解析几何等知识相联系的综合题目,类型有交点个数、恒成立等问题,其中渗透并充分利用构造函数、分类讨论、转化与划归、数形结合等重要的思想方法,主要考察导数的工具性作用. 在解题中常用的有关结论(需要熟记):(1)曲线在处的切线的斜率等于_,切线方程为(2)若可导函数在 处取得极值,则。反之,不成立。(3)对于可导函数,不等式的解集决定函数的递增(减)区间。(4)函数在区间I上递增(减)的充要条件是:,_恒成立(5)函数在区间I上不单调等价于在区间I上有极值,则可等价转化为方程在区间I上有实根且为非二重根。(若为二次函数且I=R,则有)。(6) 在区间I上无极值等价于在区间在上是单调函数,进而得到或在I上恒成立(7)若,恒成立,则_; 若,恒成立,则_(8)若,使得,则_-;若,使