精选优质文档-倾情为你奉上总结:最短路径算法关键先把已知最短路径顶点集(只有一个源点)和未知的顶点分开,然后依次把未知集合的顶点按照最短路径(这里特别强调一下是源点到该顶点的路径权重和,不仅仅是指它和父结点之间的权重,一开始就是在没有这个问题弄清楚)加入到已知结点集中。在加入时可以记录每个顶点的最短路径,也可以在加入完毕后回溯找到每个顶点的最短路径和权重。迪杰斯特拉算法用于求解一个有向图(也可以是无向图,无向图是有向图的一种特例)的一个点(称之为原点)到其余各点(称之为周边点)的最短路径问题。算法构思很是巧妙(我这么认为),简直达到了“无心插柳柳成荫”的境界。算法本身并不是按照我们的思维习惯求解从原点到第一个点的最短路径,再到第二个点的最短路径,直至最后求解完成到第n个点的最短路径,而是求解从原点出发的各有向路径的从小到大的排列(如果这个有向图中有环1-2-3-1算法岂不是永无终结之日了?!),但是算法最终确实得到了从原点到图中其余各点的最短路径,可以说这是个副产品,对于算法的终结条件也应该以求得了原点到图中其余各点的最短路径为宜。清楚了算法的这种巧妙构