高中数学巧构造-妙解题(共65页).doc

上传人:晟*** 文档编号:8528745 上传时间:2021-11-23 格式:DOC 页数:66 大小:3MB
下载 相关 举报
高中数学巧构造-妙解题(共65页).doc_第1页
第1页 / 共66页
高中数学巧构造-妙解题(共65页).doc_第2页
第2页 / 共66页
高中数学巧构造-妙解题(共65页).doc_第3页
第3页 / 共66页
高中数学巧构造-妙解题(共65页).doc_第4页
第4页 / 共66页
高中数学巧构造-妙解题(共65页).doc_第5页
第5页 / 共66页
点击查看更多>>
资源描述

精选优质文档-倾情为你奉上巧构造 妙解题1. 直接构造例1. 求函数的值域。分析:由于可以看作定点(2,3)与动点(-cosx,sinx)连线的斜率,故f(x)的值域即为斜率的最大、最小值。解:令,则表示单位圆表示连接定点P(2,3)与单位圆上任一点(,)所得直线的斜率。显然该直线与圆相切时,k取得最值,此时,圆心(0,0)到这条直线的距离为1,即所以故例2. 已知三条不同的直线,共点,求的值。分析:由条件知为某一元方程的根,于是想法构造出这个一元方程,然后用韦达定理求值。解:设(m,n)是三条直线的交点,则可构造方程,即(*)由条件知,均为关于的一元三次方程(*)的根。由韦达定理知2. 由条件入手构造例3. 已知实数x,y,z满足,求证:分析:由已知得,以x,y为根构造一元二次方程,再由判别式非负证得结论。解:构造一元二次方程其中x,y为方程的两实根所以即故0,即3. 由结论入手构造例4. 求证:若,则分析:待证式的左边求和的分母是三次式,为降低分母次数,构造一

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。