精选优质文档-倾情为你奉上三角形常应变单元程序的编制与使用有限元法是求解微分方程边值问题的一种通用数值方法,该方法是一种基于变分法(或变分里兹法)而发展起来的求解微分方程的数值计算方法,以计算机为手段,采用分片近似,进而逼近整体的研究思想求解物理问题。有限元分析的基本步骤可归纳为三大步:结构离散、单元分析和整体分析。开始输入初始数据生成单刚集成总刚施加约束信息生成荷载向量边界条件处理计算结点位移计算单元应力计算结果整理结束对于平面问题,结构离散常用的网格形状有三角形、矩形、任意四边形,以三个顶点为节点的三角形单元是最简单的平面单元,它较矩形或四边形对曲边边界有更好的适应性,而矩形或四边形单元较三节点三角形有更高的计算精度。Matlab语言是进行矩阵运算的强大工具,因此,用Matlab语言编写有限元中平面问题的程序有优越性。本章将详细介绍如何利用Matlab语言编制三角形常应变单元的计算程序,程序流程图见图1。有限元法中三节点三角形分析结构的步骤如下:1) 整理原始数据,如材料性质、荷载条件、约束条件等,离散