精选优质文档-倾情为你奉上广义矩估计一、背景我们前面学了OLS估计、工具变量估计方法,前面这几种方法都有重要假设就是需要知道分布才能估计,但是往往现实理论我们无法得到关于分布的信息,因此矩估计方法应运而生。矩估计方法的基本思想是利用样本矩的信息组成方程组来求总体矩,以此得到渐进性质下的一致性估计量。那么在构成方程组求解的过程中涉及识别问题和解决。本章详细介绍矩估计方法。矩估计方法实际应用非常广泛,应注意将矩估计与OLS估计、工具变量估计和极大似然估计方法结合对比进行应用。二、知识要点1,应用背景2,矩估计存在的问题(识别)3,矩正交方程和矩条件4,矩估计的属性三、要点细纲1、应用背景其基本思想是:在随机抽样中,样本统计量(在一个严格意义上,一个统计量是观察的n维随机向量即子样的一个(波雷尔可测)函数,且要求它不包含任何未知参数)将依概率收敛于某个常数。这个常数又是分布中未知参数的一个函数。即在不知道分布的情况下,利用样本矩构造方程(包含总体的未知参数),利用这些方程求得总体的未知参数。基本定义统计量 为子样的阶矩(阶原点矩