解读解元次方程组中的数学思想方法(共5页).doc

上传人:晟*** 文档编号:8673637 上传时间:2021-11-25 格式:DOC 页数:5 大小:179KB
下载 相关 举报
解读解元次方程组中的数学思想方法(共5页).doc_第1页
第1页 / 共5页
解读解元次方程组中的数学思想方法(共5页).doc_第2页
第2页 / 共5页
解读解元次方程组中的数学思想方法(共5页).doc_第3页
第3页 / 共5页
解读解元次方程组中的数学思想方法(共5页).doc_第4页
第4页 / 共5页
解读解元次方程组中的数学思想方法(共5页).doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

精选优质文档-倾情为你奉上解读解二元一次方程组中的数学思想方法蔡志武阮正法新课程标准突出强调:在教学中应引导学生在学习概念的基础上,掌握数学规律包括法则、性质、定理、数学思想方法。由此可见,在初中数学中,应加强对学生数学思想方法教学。下面举例说说解方程组的一些数学方法。一、转化的思想方法解方程组中的消元,其实质就是将二元一次方程组转化为一元一次方程来求解。转化是最基本的思想方法。其实质是把复杂问题简单化,陌生问题熟悉化。不可能求解问题转变成已学的能解决的问题。 例1. 解方程组解:得,得。把代入,得。方程组解为上述解法实质通过运用等式性质、加减消元法把方程组转化为一元一次方程。本例也可以用代入消元法。也是转化为一元一次方程来求解。 例2. (十一届“五羊杯”数学竞赛)解方程组剖析:上述方程不是二元一次方程组,但仔细观察可知,将方程及两边同取倒数可得则变为关于、的二元一次方程组。解:得,则。把代入得,所以。二、整体思想方法 例3. 解方程组剖析:方程及中均

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。