精选优质文档-倾情为你奉上正弦定理的几种证明方法abDABC1.利用三角形的高证明正弦定理(1)当ABC是锐角三角形时,设边AB上的高是CD,根据锐角三角函数的定义,有,。由此,得 ,同理可得 , 故有 .从而这个结论在锐角三角形中成立.ABCDba(2)当ABC是钝角三角形时,过点C作AB边上的高,交AB的延长线于点D,根据锐角三角函数的定义,有, 。由此,得 ,同理可得 故有 .由(1)(2)可知,在ABC中, 成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即.1用知识的最近生长点来证明:实际应用问题中,我们常遇到问题:已知点A,点B之间的距AB|,可测量角A与角B,需要定位点C,即:在如图ABC中,已知角A,角B,ABc,求边AC的长b解:过C作CDAB交AB于D,则 推论:同理可证:2.利用三角形面积证明正弦定理
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。