精选优质文档-倾情为你奉上旋转法解题例析(一)正三角形类型在正ABC中,P为ABC内一点,将ABP绕A点按逆时针方向旋转600,使得AB与AC重合。经过这样旋转变化,将图(1-1-a)中的PA、PB、PC三条线段集中于图(1-1-b)中的一个PCP中,此时PAP也为正三角形。例1. 如图:(1-1):设P是等边ABC内的一点,PA=3, PB=4,PC=5,APB的度数是_.(二)正方形类型在正方形ABCD中,P为正方形ABCD内一点,将ABP绕B点按顺时针方向旋转900,使得BA与BC重合。经过旋转变化,将图(2-1-a)中的PA、PB、PC三条线段集中于图(2-1-b)中的CPP中,此时BPP 为等腰直角三角形。例4 如图,P是正方形ABCD内一点,且满足PA:PD:PC=1:2:3,则APD= . 分析与解:设PA=k,则PD=2k,PC=3k(k0),而PA、PD、PC三条线段较为分散,故可考虑旋转法,目的就是将三条线段以等线段替换方式集中在一个三角形中