精选优质文档-倾情为你奉上定积分知识点1.定积分的概念:一般地,设函数在区间上连续,用分点将区间等分成个小区间,每个小区间长度为(),在每个小区间上任取一点,作和式:如果无限接近于(亦即)时,上述和式无限趋近于常数,那么称该常数为函数在区间上的定积分。记为:,其中积分号,积分上限,积分下限,被积函数,积分变量,积分区间,被积式。说明:(1)定积分是一个常数,即无限趋近的常数(时)记为,而不是(2)用定义求定积分的一般方法是:分割:等分区间;近似代替:取点;求和:;取极限:;(3)曲边图形面积:;变速运动路程;变力做功2定积分的几何意义从几何上看,如果在区间上函数连续且恒有,那么定积分表示由直线和曲线所围成的曲边梯形(如图中的阴影部分)的面积,这就是定积分的几何意义。说明:一般情况下,定积分的几何意义是介于轴、函数的图形以及直线之间各部分面积的代数和,在轴上方的面积取正号,在轴下方的面积去负号。分析:一般的,设被积函数,若在上可取负值。考察和式不妨设于是和式即为阴影的面积阴影的面积(即轴上方面积减轴