精选优质文档-倾情为你奉上1.选题的目的、意义及国内外对本课题涉及问题的研究现状:(一)选题目的及意义从高中到大学,在不断的学习关于函数的性质,其中极值的运算是我们学习函数性质重要的一部分,它不可或缺,在大学通过对函数导数的求解,以及对高阶导数运算帮助我们,进一步了解函数极值。求一元、二元函数的极值问题是数学分析中的基本内容,可应用于实践中求最大、最小的问题。也可以使用二次型的理论进行判断,并将问题扩大为求任意多元函数的极值。微积分是研究函数微分、积分以及有关概念和应用的一个重要的数学分支。研究微积分理论不仅具有重要的理论意义, 而且也具有重要的应用价值, 而极限在微积分中占有举足轻重的地位。 但是极限技巧性强, 灵活多变,初学者不易掌握, 为此极限被称为高等数学学习的第一个难关。本文运用极值理论,从经济管理决策中常遇到的需求分析问题、利润最大化问题、库存管理问题、成本最小化问题和复利问题等着手,通过具体实例对导数等相关知识在经济中的应用进行探讨和研究。本文对极限的求法做了总结归纳,望给初学者有一定的帮助。(二) 国内外研究现状微积分是研究函数微分、积分以及