精选优质文档-倾情为你奉上求动点的轨迹方程(例题,习题与答案)在中学数学教学和高考数学考试中,求动点轨迹的方程和曲线的方程是一个难点和重点内容(求轨迹方程和求曲线方程的区别主要在于:求轨迹方程时,题目中没有直接告知轨迹的形状类型;而求曲线的方程时,题目中明确告知动点轨迹的形状类型)。求动点轨迹方程的常用方法有:直接法、定义法、相关点法、参数法与交轨法等;求曲线的方程常用“待定系数法”。l 求动点轨迹的常用方法动点P的轨迹方程是指点P的坐标(x, y)满足的关系式。1. 直接法(1)依题意,列出动点满足的几何等量关系;(2)将几何等量关系转化为点的坐标满足的代数方程。例题 已知直角坐标平面上点Q(2,0)和圆C:,动点M到圆C的切线长等与,求动点M的轨迹方程,说明它表示什么曲线 解:设动点M(x,y),直线MN切圆C于N。依题意:,即而,所以(x-2)+y=x+y-1化简得:x=。动点M 的轨迹是一条直线。2. 定义法分析图形的几何性质得出动点所满足的几何条件,由动点满足的几何条件可以判断出动点的轨迹满足圆(或