1、第 1 页2018 年中考数学知识点大全第一章 实数考点一、实数的概念及分类 (3 分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如 等;32,7(2)有特定意义的数,如圆周率 ,或化简后含有 的数,如 +8 等;3(3)有特定结构的数,如 0.1010010001等;(4)某些三角函数,如 sin60o 等考点二、实数的倒数、相反数和绝对值 (3 分)1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是
2、零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=b,反之亦成立。2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|0。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则 a0;若 |a|=-a,则 a0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。倒数等于本身的数是 1 和-1,零没有倒数。考点三、平方根、算数平方根和立方根 (310 分)1、平方根如果一个数的平方等于 a,那么这个数就叫做 a 的平方根(或二次方跟)。一个
3、数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。正数 a 的平方根记做“ ”。2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ ”。a正数和零的算术平方根都只有一个,零的算术平方根是零。( 0) 0;注意 的双重非负性:a2 a- ( 0 时,方程有两个不相等的实数根;c2(2)当=0 时,方程有两个相等的实数根;(3)当0 时,方程没有实数根。考点五、一元二次方程根与系数的关系 (3 分)如果方程 的两个实数根是 ,那么 , 。也就是说,对于)0(2acbxa 21x, abx21cx21任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项
4、系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。考点六、分式方程 (8 分)1、分式方程分母里含有未知数的方程叫做分式方程。2、分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是:(1)去分母,方程两边都乘以最简公分母(2)解所得的整式方程第 6 页(3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。3、分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。考点七、二元一次方程组 (810 分)1、二元一次
5、方程含有两个未知数,并且未知项的最高次数是 1 的整式方程叫做二元一次方程,它的一般形式是(2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。3、二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。4 二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。5、二元一次方正组的解法(1)代入法(2)加减法6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是 1 的整式方程。7、三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次
6、方程组。第四章 不等式(组)考点一、不等式的概念 (3 分)1、不等式用不等号表示不等关系的式子,叫做不等式。2、不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。求不等式的解集的过程,叫做解不等式。3、用数轴表示不等式的方法考点二、不等式基本性质 (35 分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。考点三、
7、一元一次不等式 (68 分)1、一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是 1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。2、一元一次不等式的解法解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将 x 项的系数化为 1考点四、一元一次不等式组 (8 分)1、一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组。几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。求不等式组的解集的过程,叫做解不等式组。当任何数 x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为
8、空集。2、一元一次不等式组的解法第 7 页(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。第五章 统计初步与概率初步考点一、平均数 (3 分)1、平均数的概念(1)平均数:一般地,如果有 n 个数 那么, 叫做这 n 个数的平均数,,21nx )(12nxx读作“ x 拔” 。(2)加权平均数:如果 n 个数中, 出现 次, 出现 次, 出现 次(这里1xf2xfkxkf),那么,根据平均数的定义,这 n 个数的平均数可以表示为 ,ffk21 nfxfk21这样求得的平均数 叫做加权平均数,其中 叫做权。xkff,212、平均数的计算
9、方法(1)定义法当所给数据 比较分散时,一般选用定义公式:,21nx )(12nxxn(2)加权平均数法:当所给数据重复出现时,一般选用加权平均数公式: ,其中 。ffxk21 nffk21(3)新数据法:当所给数据都在某一常数 a 的上下波动时,一般选用简化公式: 。ax其中,常数 a 通常取接近这组数据平均数的较“整”的数, , , 。1 2 axn是新数据的平均数(通常把 叫做原数据, 叫做新数据)。)(12nxxn ,21nx ,1nx考点二、统计学中的几个基本概念 (4 分)1、总体:所有考察对象的全体叫做总体。2、个体:总体中每一个考察对象叫做个体。3、样本:从总体中所抽取的一部分
10、个体叫做总体的一个样本。4、样本容量:样本中个体的数目叫做样本容量。5、样本平均数:样本中所有个体的平均数叫做样本平均数。6、总体平均数:总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。考点三、众数、中位数 (35 分)1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数。2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。第 8 页考点四、方差 (3 分)1、方差的概念在一组数据 中,各数据与它们的平均数 的差的平方的平均数,叫做这组数据的方差。通常用,21nx x“ ”表示,即: 2s )()
11、()( 2221xs n2、方差的计算(1)基本公式: )()()( 2221 xxxns n(2)简化计算公式():,也可写成)(221n 2212 )(xxnsn此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。(3)简化计算公式(): )(1222xsn当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数 a,得到一组新数据 , , ,那么,ax1 a2 axn2212 )(xnsn此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。(4)新数据法:原数据 的方差与新数据 , , 的方差相等,也就是说,,2
12、1nx ax1 ax2 axn根据方差的基本公式,求得 的方差就等于原数据的方差。,21n3、标准差方差的算数平方根叫做这组数据的标准差,用“s”表示,即 )()()(12222 xxxns n考点五、频率分布 (6 分)1、频率分布的意义在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。2、研究频率分布的一般步骤及有关概念(1)研究样本的频率分布的一般步骤是:计算极差(最大值与最小值的差)决定组距与组数决定分点列频率分布表画频率分布直方图(2)频率分布的有关概念极差:最大值与最小值的差频数:落在
13、各个小组内的数据的个数频率:每一小组的频数与数据总数(样本容量 n)的比值叫做这一小组的频率。考点六、确定事件和随机事件 (3 分)1、确定事件第 9 页必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。2、随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。考点七、随机事件发生的可能性 (3 分)一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。要评
14、判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。考点八、概率的意义与表示方法 (56 分)1、概率的意义一般地,在大量重复试验中,如果事件 A 发生的频率 会稳定在某个常数 p 附近,那么这个常数 p 就叫做mn事件 A 的概率。2、事件和概率的表示方法一般地,事件用英文大写字母 A,B,C,表示事件 A 的概率 p,可记为 P(A)=P考点九、确定事件和随机事件的概率之间的关系 (3 分)1、确定事件概率(1)当 A 是必然发生的事件时, P(A )=1(2)当 A 是不可能发生的事件
15、时, P(A )=02、确定事件和随机事件的概率之间的关系事件发生的可能性越来越小0 1 概率的值不可能发生 必然发生事件发生的可能性越来越大考点十、古典概型 (3 分)1、古典概型的定义某个试验若具有:在一次试验中,可能出现的结构有有限多个;在一次试验中,各种结果发生的可能性相等。我们把具有这两个特点的试验称为古典概型。2、古典概型的概率的求法一般地,如果在一次试验中,有 n 种可能的结果,并且它们发生的可能性都相等,事件 A 包含其中的 m 中结果,那么事件 A 发生的概率为 P(A )= m考点十一、列表法求概率 (10 分)1、列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做
16、列表法。2、列表法的应用场合当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。考点十二、树状图法求概率 (10 分)1、树状图法就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。2、运用树状图法求概率的条件当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。考点十三、利用频率估计概率(8 分)1、利用频率估计概率在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件第 10 页发生的概率。2、在统计学中,常用较为简
17、单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。3、随机数在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。把这些随机产生的数据称为随机数。第六章 一次函数与反比例函数考点一、平面直角坐标系 (3 分)1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中,水平的数轴叫做 x 轴或横轴,取向右为正方向;铅直的数轴叫做 y 轴或纵轴,取向上为正方向;两轴的交点 O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。为了便于描述坐标平面内点的位置,把坐标平面被 x 轴和 y 轴分割而成的四个部分,
18、分别叫做第一象限、第二象限、第三象限、第四象限。注意:x 轴和 y 轴上的点,不属于任何象限。2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当 时,(a , b)和(b,a)是两个不同点的坐标。考点二、不同位置的点的坐标的特征 (3 分)1、各象限内点的坐标的特征点 P(x,y)在第一象限 ;点 P(x,y)在第二象限 ;0,yx 0,yx点 P(x,y)在第三象限 ;点 P(x,y)在第四象限 。2、坐标轴上的点的特征点 P(x,y)在 x 轴上 ,x 为任意实数;点 P(x,y)在 y 轴
19、上 ,y 为任意实数;y x点 P(x,y)既在 x 轴上,又在 y 轴上 x,y 同时为零,即点 P 坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点 P(x,y)在第一、三象限夹角平分线上 x 与 y 相等点 P(x,y)在第二、四象限夹角平分线上 x 与 y 互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于 x 轴的直线上的各点的纵坐标相同。位于平行于 y 轴的直线上的各点的横坐标相同。5、关于 x 轴、y 轴或远点对称的点的坐标的特征点 P 与点 p关于 x 轴对称 横坐标相等,纵坐标互为相反数点 P 与点 p关于 y 轴对称 纵坐标相等,横坐标互为相反数点 P 与点 p关于 原点对称 横、纵坐标均互为相反数6、点到坐标轴及原点的距离点 P(x,y)到坐标轴及原点的距离:(1)点 P(x,y)到 x 轴的距离等于 ;(2)点 P(x,y)到 y 轴的距离等于y x(3)点 P(x,y)到原点的距离等于 x考点三、函数及其相关概念 (38 分)