精选优质文档-倾情为你奉上放缩法的应用技巧放缩法证明数列不等式是高考数学命题的热点和难点。所谓放缩法就是利用不等式的传递性,对不等式的局部进行合理的放大和缩小从而向结论转化,其难度在于放缩的合理和适度。证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧从而充满思考性和挑战性。为了帮助更多的学生突破这一难点,我们从以下几个方面对放缩法证明数列不等式的基本策略进行分析。一、常见的放缩方法证题中经常用到的放缩方法法有:1.“添舍”放缩:对不等式一边添项或舍项以达到放大和缩小的效果;2.分式放缩:分别放缩分式的分子、分母或者同时放缩分子分母以达到放缩的效果;3.利用重要的不等式或结论放缩:把欲证不等式变形构造,然后利用已知的公式或恒不等式进行放缩,例如均值不等式、柯西不等式、绝对值不等式、二项式定理、贝努力公式、真分数性质定理等。4.单调性放缩:挖掘不等式的结构特征和函数内涵来构造单调数列或单调函数,利用单调性、值域产生的不等关系进行放缩。二、常见的放缩控制当我们选择了正确的放缩方法后,却往往会在放缩的过程中不知不觉间失控,导致放缩