精选优质文档-倾情为你奉上二次函数中直角三角形存在性问题1. 找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角 顶点时,以已知线段为直径构造圆找点2. 方法:以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1以已知线段为斜边时,利用K型图,构造双垂直模型,最后利用相似求解,或者 三条边分别表示之后,利用勾股定理求解例一:如图,抛物线 与x轴交于A、B两点,与y轴交于C点. (1)请求出抛物线顶点M的坐标(用含m的代数式表示),A、B两点的坐标;(2)经探究可知,BCM与ABC的面积比不变,试求出这个比值;(3)是否存在使BCM为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由例2、如图,抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C.(1)求该抛物线的解析式;(2)M为第一象限内抛物线上一动点,点M在何处时,ACM的面积最大;(3)在抛物线的对称轴上是否存在这样的点P,使得PAC为