精选优质文档-倾情为你奉上平面向量单元教学设计武都区两水中学 王斌向量是近代数学中重要和基本的数学概念之一,有深刻的几何背景,是解决几何问题的有力工具。向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系。向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。在本章中,学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力。一、单元教学目标本章主要包括平面向量的实际背景及基本概念、平面向量的线性运算、平面向量的基本定理及坐标表示、平面向量的数量积、平面向量应用五部分内容。通过本章学习,应引导学生:1通过力和力的分析等实例,知道向量的实际背景,会运用平面向量和向量相等的含义,会向量的几何表示。2通过实例,会算向量加、减法的运算,并会求其几何意义。3通过实例,熟练运用向量数乘的运算,并解释其几何意义,以及两个向量共线的含义。4