精选优质文档-倾情为你奉上习题十1. 设G是一个(n,m)简单图。证明:,等号成立当且仅当G是完全图。证明:(1)先证结论: 因为G是简单图,所以G的结点度上限 max(d(v) n-1, G图的总点度上限为 max(d(v) nmax(d(v) n(n-1) 。根据握手定理,G图边的上限为 max(m) n(n-1)/2,所以。(2) =G是完全图因为G具有上限边数,假设有结点的点度小于n-1,那么G的总度数就小于上限值,边数就小于上限值,与条件矛盾。所以,G的每个结点的点度都为n-1,G为完全图。G是完全图 =因为G是完全图,所以每个结点的点度为n-1, 总度数为n(n-1),根据握手定理,图G的边数 。2. 设G是一个(n,n+1)的无向图,证明G中存在顶点u,d(u)3。证明:反证法,假设,则G的总点度上限为max(d(u) 2 n,根据握手定理,图边的上限为max(m) 2n/2=n。与题设m = n+1,矛盾。因此,G中存在顶点u,d(u)