精选优质文档-倾情为你奉上三角函数中的“拆角”技巧及应用三角函数的计算是高中的一个重要考点.对于一些和角的计算问题除了掌握和角(差角)及倍角公式之外,还要掌握一些必要的“拆角”技巧.这样可以简化运算.有时候,在利用两角和差的余弦、正玄和正切公式时,不能机械地从表面去套公式,而要变通地从本质上使用公式。即要把所求的角拆分成某两个角(已知的两个角或者可以从已知的角简单变形就能得到的两个角)的和差,并且这两个角的正、余玄函数值和正切函数值是已知的或可求的,再代入公式即可求解。这里以正、余玄公式求解为例。通过认真审题,我们就可以发现已知角和所求角之间的关系,这样我们就可以进去“拆角”。第一类:只有抽象的角,没有具体的角。如:已知两个角,那么通过简单变形就可得到: ,; ,;,;正确利用它们具有的这些关系进行“拆角”就能避免求某个角的三角函数值而带来的麻烦。我们来看看具体实例:例1:已知两角满足,则。解析:由,得,且 。所以,那么=评注:通过观察发现所给条件中的角与待求角之间的关系.巧妙地