精选优质文档-倾情为你奉上(1) 设是一个实的零均值二阶矩过程,其相关函数为,且是一个周期为的函数,即,求方差函数。解:由定义,有:(2) 试证明:如果是一独立增量过程,且,那么它必是一个马尔可夫过程。证明:我们要证明:,有形式上我们有:因此,我们只要能证明在已知条件下,与相互独立即可。由独立增量过程的定义可知,当时,增量与相互独立,由于在条件和下,即有与相互独立。由此可知,在条件下,与相互独立,结果成立。(3) 设随机过程为零初值()的、有平稳增量和独立增量的过程,且对每个,问过程是否为正态过程,为什么?解:任取,则有:由平稳增量和独立增量性,可知并且独立因此是联合正态分布的,由可知是正态过程。(4) 设为为零初值的标准布朗运动过程,问次过程的均方导数过程是否存在?并说明理由。解:标准布朗运动的相关函数为:如果标准布朗运动是均方可微的,则存在,但是:故不存在,因此标准布朗运动不是均方可微的。(5) 设,是零初值、强度的泊松过程。写出过程的转移函数,并问在均方意义下,是否存