人教版九年级数学第23章旋转教案.doc

上传人:h**** 文档编号:917684 上传时间:2018-11-06 格式:DOC 页数:22 大小:235.01KB
下载 相关 举报
人教版九年级数学第23章旋转教案.doc_第1页
第1页 / 共22页
人教版九年级数学第23章旋转教案.doc_第2页
第2页 / 共22页
人教版九年级数学第23章旋转教案.doc_第3页
第3页 / 共22页
人教版九年级数学第23章旋转教案.doc_第4页
第4页 / 共22页
人教版九年级数学第23章旋转教案.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、1九年级数学第二十三章旋转全章教案单元要点分析教学内容1主要内容:图形的旋转及其有关概念:包括旋转、旋转中心、旋转角图形旋转的有关性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等通过不同形式的旋转,设计图案中心对称及其有关概念:中心对称、对称中心、关于中心的对称点;关于中心对称的两个图形中心对称的性质:对称点所连线段都经过对称中心,而且被对称中心所平分;关于中心对称的两个图形是全等图形中心对称图形:概念及性质:包括中心对称图形、对称中心关于原点对称的点的坐标:两个点关于原点对称时,它们的坐标符号都相反,即点 P(x,y)关于原点的对称点为 P(-

2、x,-y)课题学习图案设计2本单元在教材中的地位与作用:学生通过平移、平面直角坐标系,轴对称、反比例函数、四边形等知识的学习,初步积累了一定的图形变换数学活动经验本章在此基础上,让学生进行观察、分析、画图、简单图案的欣赏与设计等操作性活动形成图形旋转概念它又对今后继续学习数学,尤其是几何,包括圆等内容的学习起着桥梁铺垫之作用教学目标1知识与技能了解图形的旋转的有关概念并理解它的基本性质了解中心对称的概念并理解它的基本性质了解中心对称图形的概念;掌握关于原点对称的两点的关系并应用;再通过几何操作题的练习,掌握课题学习中图案设计的方法2过程与方法(1)让学生感受生活中的几何,通过不同的情景设计归纳

3、出图形旋转的有关概念,并用这些概念来解决一些问题(2)通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题(3)经历复习图形的旋转的有关概念和性质,分析不同的旋转中心,不同的旋转角,出现不同的效果并对各种情况进行分类(4)复习对称轴和轴对称图形的有关概念,通过知识迁移讲授中心对称图形和对称中心的有关内容,并附加练习巩固这个内容2(5)通过几何操作题,探究猜测发现规律,并给予证明,附加例题进一步巩固(6)复习中心对称图形和对称中心的有关概念,然后提出问题,让学生观察、思考,老师归纳得出

4、中心对称图形和对称中心的有关概念,最后用一些例题、练习来巩固这个内容(7)复习平面直角坐标系的有关概念,通过实例归纳出两个点关于原点对称时,坐标符号之间的关系,并运用它解决一些实际问题(8)通过复习平移、轴对称、旋转等有关概念研究如何进行图形设计3情感、态度与价值观让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情教学重点1图形旋转的基本性质2中心

5、对称的基本性质3两个点关于原点对称时,它们坐标间的关系教学难点1图形旋转的基本性质的归纳与运用2中心对称的基本性质的归纳与运用教学关键1利用几何直观,经历观察,产生概念;2利用几何操作,通过观察、探究,用不完全归纳法归纳出图形的旋转和中心对称的基本性质单元课时划分本单元教学时间约需 10 课时,具体分配如下:231 图形的旋转 3 课时232 中心对称 4 课时233 课题学习;图案设计 1 课时教学活动、习题课、小结 2 课时323.1 图形的旋转(1)第一课时教学内容1什么叫旋转?旋转中心?旋转角?2什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应

6、用它们解决一些实际问题通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题重难点、关键1重点:旋转及对应点的有关概念及其应用2难点与关键:从活生生的数学中抽出概念教具、学具准备三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题1将如图所示的四边形 ABCD 平移,使点 B 的对应点为点 D,作出平移后的图形2如图,已知ABC 和直线 L,请你画出ABC 关于 L 的对称图形ABC3圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质4(2)如何画一个图形关于一条直线(对称轴)的对称图形并

7、口述它既有的一些性质(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究1请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心如果从现在到下课时针转了_度,分针转了_度,秒针转了_度2再看我自制的好像风车风轮的玩具,它可以不停地转动如何转到新的位置?(老师点评略)3第 1、2 两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的

8、角度像这样,把一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转,点 O 叫做旋转中心,转动的角叫做旋转角如果图形上的点 P 经过旋转变为点 P,那么这两个点叫做这个旋转的对应点下面我们来运用这些概念来解决一些问题例 1如图,如果把钟表的指针看做三角形 OAB,它绕 O 点按顺时针方向旋转得到OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点 A、B 分别移动到什么位置?解:(1)旋转中心是 O,AOE、BOF 等都是旋转角(2)经过旋转,点 A 和点 B 分别移动到点 E 和点 F 的位置最后强调,这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点

9、都是不唯一的三、巩固练习教材 P56 练习 1、2、3四、归纳小结(学生总结,老师点评)本节课应掌握:把一个图形绕着某一点 O 转动一个角度的图形变换叫做旋转,点 O 叫做旋转中心,转动的角叫做旋转角5如果图形上的点 P 经过旋转变为点 P,那么这两个点叫做这个旋转的对应点五、教学反思补充练习一、选择题1在 26 个英文大写字母中,通过旋转 180后能与原字母重合的有( )A6 个 B7 个 C8 个 D9 个2从 5 点 15 分到 5 点 20 分,分针旋转的度数为( )A20 B26 C30 D363如图 1,在 RtABC 中,ACB=90,A=40,以直角顶点 C 为旋转中心,将AB

10、C 旋转到ABC 的位置,其中 A、B分别是 A、B 的对应点,且点 B在斜边 AB上,直角边 CA交 AB 于 D,则旋转角等于( )A70 B80 C60 D50(1) (2) (3)二、填空题1在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为_,这个定点称为_,转动的角为_2如图 2,ABC 与ADE 都是等腰直角三角形,C 和AED 都是直角,点 E在AB 上,如果ABC 经旋转后能与ADE 重合,那么旋转中心是点_;旋转的度数是_3如图 3,ABC 为等边三角形,D 为ABC内一点,ABD经过旋转后到达ACP 的位置,则,(1)旋转中心是_;(2)旋转角度是

11、_;(3)ADP是_三角形23.1 图形的旋转(2)第二课时6教学内容1对应点到旋转中心的距离相等2对应点与旋转中心所连线段的夹角等于旋转角3旋转前后的图形全等及其它们的运用教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等掌握以上三个图形的旋转的基本性质的运用先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质重难点、关键1重点:图形的旋转的基本性质及其应用2难点与关键:运用操作实验几何得出图形的旋转的三条基本性质教学过程一、复习引入(学生活动)老师口问,学生口答1什么叫旋转?什么叫旋转中心

12、?什么叫旋转角?2什么叫旋转的对应点?3请独立完成下面的题目如图,O 是六个正三角形的公共顶点,正六边形 ABCDEF 能否看做是某条线段绕 O 点旋转若干次所形成的图形?(老师点评)分析:能看做是一条边(如线段 AB)绕 O 点,按照同一方法连续旋转 60、120、180、240、300形成的二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1A、B、C、D、E、F 到 O 点的距离是否相等?2对应点与旋转中心所连线段的夹角BOC、COD、DOE、EOF、FOA 是否相等?3旋转前、后的图形这里指三角形OAB、OBC、OCD、ODE、OEF、OFA 全等吗?老师点评:(1)距

13、离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点 O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图7案(ABC),然后围绕旋转中心 O 转动硬纸板,在黑板上再描出这个挖掉的三角形(ABC),移去硬纸板(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1线段 OA 与 OA,OB 与 OB,OC 与 OC有什么关系?2AOA,BOB,COC有什么关系?3ABC 与ABC形状和大小有什么关系?老师点评:1OA=OA,OB=OB,OC=OC,也就是对应点到旋转中心相等2A

14、OA=BOB=COC,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角3ABC 和ABC形状相同和大小相等,即全等综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等例 1如图 23.1-4,E 是正方形 ABCD 中 CD 边上任意一点,以点A 为中心,把 顺时针旋转 ,画出旋转后的图形,并作答下D90面的问题。(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果连结 EF,那么AEF 是怎样的三角形?分析:作图过程略,ADE 旋转 后得到ABF,因为ABF 是ADE 的旋转图9

15、0形,可直接得出旋转中心和旋转角,要求 AF的长度,根据旋转前后的对应线段相等,只要求 AE 的长度,由勾股定理很容易得到ABF 与ADE 是完全重合的,所以它是直角三角形解:作图过程见课本。(1)旋转中心是 A 点(2)ABF 是由ADE 旋转而成的B 是 D 的对应点DAB=90就是旋转角8(4)EAF=90(与旋转角相等)且 AF=AE EAF 是等腰直角三角形三、巩固练习 教材 P58 练习 1、2四、作业布置 教材 P59 习题 23.1 第 1 题五、归纳小结(学生总结,老师点评)本节课应掌握:1对应点到旋转中心的距离相等;2对应点与旋转中心所连线段的夹角等于旋转角;3旋转前、后的

16、图形全等及其它们的应用六、教学反思补充练习一、选择题1ABC 绕着 A 点旋转后得到ABC,若BAC=130,BAC=80,则旋转角等于( )A50 B210 C50或 210 D1302在图形旋转中,下列说法错误的是( )A在图形上的每一点到旋转中心的距离相等B图形上每一点移动的角度相同C图形上可能存在不动的点D图形上任意两点的连线与其对应两点的连线长度相等3如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是( )二、填空题1在作旋转图形中,各对应点与旋转中心的距离_2如图,ABC 和ADE 均是顶角为 42的等腰三角形,BC、DE 分别是底边,图中的ABD 绕 A 旋转 42

17、后得到的图形是_,它们之间的关系是_,其中 BD=_3如图,自正方形 ABCD 的顶点 A 引两条射线分别交 BC、CD 于E、F,EAF=45,在保持EAF=45的前提下,当点 E、F 分别在边 BC、CD 上移动时,BE+DF与 EF 的关系是_923.2 中心对称(1)第一课时教学内容两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题教学目标了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题复习运用旋转知识作图,旋转角度变化,设计出不同的美丽图案来引入旋转180的特殊旋转中心对称的概念,并运用它解决一些实际问题重难点、关键

18、1重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题2难点与关键:从一般旋转中导入中心对称教具、学具准备三角尺教学过程一、复习引入请同学们独立完成下题如图,ABC 绕点 O 旋转,使点 A 旋转到点 D 处,画出旋转后的三角形,并写出简要作法老师点评:分析,本题已知旋转后点 A 的对应点是点 D,且旋转中心也已知,所以关键是找出旋转角和旋转方向显然,逆时针或顺时针旋转都符合要求,一般我们选择小于 180的旋转角为宜,故本题选择的旋转方向为顺时针方向;已知一对对应点和旋转中心,很容易确定旋转角如图,连结 OA、OD,则AOD 即为旋转角接下来根据“任意一对对应点与旋转中心的连线所成的

19、角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可作法:(1)连结 OA、OB、OC、OD;(2)分别以 OB、OB 为边作BOM=CON=AOD;(3)分别截取 OE=OB,OF=OC;(4)依次连结 DE、EF、FD;即:DEF 就是所求作的三角形,如图所示10二、探索新知问题:作出如图的两个图形绕点 O 旋转 180的图案,并回答下列的问题:1以 O 为旋转中心,旋转 180后两个图形是否重合?2各对称点绕 O 旋转 180后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕 O 旋转 180都是重合的,即甲图与乙图重合,OAB 与COD 重合像这样,把一

20、个图形绕着某一个点旋转 180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心这两个图形中的对应点叫做关于中心的对称点例 1如图,四边形 ABCD 绕 D 点旋转 180,请作出旋转后的图案,写出作法并回答(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由(2)如果是中心对称,那么 A、B、C、D 关于中心的对称点是哪些点分析:(1)根据中心对称的定义便直接可知这两个图形是中心对称图形,对称中心就是旋转中心(3)旋转后的对应点,便是中心的对称点解:作法:(1)延长 AD,并且使得 DA=AD(2)同样可得:BD=BD,CD=CD

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 课件讲义

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。