精选优质文档-倾情为你奉上关于椭圆离心率设椭圆的左、右焦点分别为,如果椭圆上存在点P,使,求离心率e的取值范围。 解法1:利用曲线范围 设P(x,y),又知,则 将这个方程与椭圆方程联立,消去y,可解得 解法2:利用二次方程有实根由椭圆定义知 解法3:利用三角函数有界性 记 解法4:利用焦半径 由焦半径公式得 解法5:利用基本不等式 由椭圆定义,有 平方后得 解法6:巧用图形的几何特性 由,知点P在以为直径的圆上。 又点P在椭圆上,因此该圆与椭圆有公共点P 故有演练一、直接求出或求出a与b的比值,以求解。在椭圆中,1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于_2.已知椭圆两条准线间的距离是焦距的2倍,则其离心率为_
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。