精选优质文档-倾情为你奉上牛顿插值法 是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定的值作为函数f (x)的近似值。如果这特定函数是,就称它为插值多项式。当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。为了克服这一缺点,提出了插值。 牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=fx0+fx0,x1(x-x0)+fx0,x1,x2(x-x0)(x-x1)+.fx0,.xn(x-x0).(x-xn-1)+Rn(x)。插值函数 插值函数的概念及相关性质定义:设连续函数y-f(x) 在区间a,b上有定义,已知在n+1个互异的点x0,x1,xn上取值分别为y0,y1,yn (设a x1x2xnb)。若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数.称x1,x2,xn 为插值节点,称a,b为插值区间。定理:n次代数插值问题的解存在且唯一 。牛顿插值法C程序