精选优质文档-倾情为你奉上不定积分专心-专注-专业一、原函数定义1 如果对任一,都有 或 则称为在区间I 上的原函数。例如:,即是的原函数。 ,即是的原函数。原函数存在定理:如果函数在区间I 上连续,则在区间I 上一定有原函数,即存在区间I 上的可导函数,使得对任一,有。注1:如果有一个原函数,则就有无穷多个原函数。设是的原函数,则,即也为的原函数,其中为任意常数。注2:如果与都为在区间I 上的原函数,则与之差为常数,即(C为常数)注3:如果为在区间I 上的一个原函数,则(为任意常数)可表达的任意一个原函数。二、不定积分定义2 在区间I上,的带有任意常数项的原函数,成为在区间I上的不定积分,记为。如果为的一个原函数,则 ,(为任意常数)三、不定积分的几何意义不定积分的几何意义如图51所示: 图 51设是的一个原函
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。