精选优质文档-倾情为你奉上第五章一元函数积分学本章前半部分介绍不定积分的概念及其计算方法,然后简单介绍微分方程的基本概念以及利用不定积分方法求解两类简单微分方程;后半部分介绍定积分的概念、计算方法,以及定积分在几何和物理的应用。本章内容占全出考试内容25%。重点是不定积分和定积分计算,难点是换元法,分部积分。5.1原函数与不定积分的概念一、原函数与不定积分定义5.1设f(x)是定义在区间I上的一个函数。如果F(x)是区间I上的可导函数,并且对任意的均有或Df(x)=f(x)dx则称F(x)是f(x)在区间I上的一个原函数。例如,因为对任意的均有,所以sinx是cosx在区间(-,+)内的一个原函数。因为对任意的均有,所以arcsinx是在(-1,1)内的一个原函数。显然,一个函数的原函数不是唯一的。事实上,如果F(x)是f(x)在区间I上的一个原函数,即,那么,对任意常数C,均有,从而F(x)+C也是f(x)在区间I上的原函数。这说明,如果函数f(x)在区间I上有一个原函数,那么f(x)在I上有无穷多个原函数。另一方面,如