精选优质文档-倾情为你奉上初中数学思想和解题方法专题一、学习指引1知识要点:数形结合思想;分类讨论思想;转化化归思想;方程思想2方法指引:(1)数形结合法: 数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离”几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法每个几何图形中蕴含着一定的数量关系,而数量关系常常又通过图形的直观性作出反映和描述,数与形之间可以相互转化,将问题化难为易,化抽象为具体. 数形结合的思想方法通过借数解形、以形助数,能使某些较复杂的数学问题迎刃而解(2)分类讨论法:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略分类是按