精选优质文档-倾情为你奉上直线与双曲线的位置关系知识梳理:1、直线与双曲线有无公共点或有几个公共点的问题:可以转化为它们所对应的方程构成的方程组是否有解或解的个数问题,往往通过消元后最终转化为讨论一元二次方程的解的问题或一元二次函数的最值问题,讨论时特别要注意转化的等价性,即解决直线与圆锥曲线的相交问题要用好化归思想和等价转化思想需要注意的是当直线平行于双曲线的渐近线时,直线与双曲线有且只有一个交点2、涉及直线与双曲线相交弦的问题:主要有这样几个方面:相交弦的长,有弦长公式|AB|=|x2x1|;弦所在直线的方程(如中点弦、相交弦等)、弦的中点的轨迹等,这可以利用“设点代点、设而不求”的方法(设交点坐标,将交点坐标代入曲线方程,并不具体求出坐标,而是利用坐标应满足的关系直接导致问题的解决)3、韦达定理的运用:由于二次曲线和二次方程的密切关系,在解决二次曲线问题时要充分重视韦达定理的运用4、 弦长公式:若直线与圆锥曲线交于两点A(x1,y1),B(x2,y2),则弦长为 ;若直线与圆锥曲线交于两点A(x1,y1),B(x2,y