精选优质文档-倾情为你奉上4 多元复合函数的求导法则【目的要求】 1、掌握多元复合函数及几种特殊复合函数的求导法则; 2、理解全导数的概念; 3、会利用多元函数的一阶全微分形式不变性求偏导数 【重点难点】 各类型复合函数求导公式及计算;各变量之间的复合关系 【教学内容】在第二章中,我们学习了一元函数的复合函数求导,现将一元复合函数的求导法则推广到多元复合函数的情形,按照多元函数的不同复合情形,分三种情形讨论. 一、复合函数的中间变量均为一元函数的情形. 图4-25定理4.1 如果函数及都在点可导,且函数在对应点具有连续偏导数,则复合函数在点可导,且其导数为。证 设取得增量,这时,的对应增量为,函数相应地获得增量.由于函数可微,所以有可以表示为其中.将上式两端同除以,得由于在点可导,所以当时,,从而,并且有 .于是 ,所以。这就证明了复合函数 在点可导,且公式成立.导数称为全导数同理,我们可以把定理推广到对于中间变量多于两个的复合函数情形。例如,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。