1、物理学一级学科(0702)博士研究生培养方案一、培养目标总体要求:完成培养方案规定的课程学习任务,在各个科研环节接受专门训练,在导师指导下独立或者自主完成导师安排的科研工作,取得一定量的科研成果,毕业论文达到理学博士学位论文水平。具体要求如下:1.了解国内外物理学研究历史、现状和可能的发展方向;2.能用一门外语进行学术交流和论文写作;3.系统掌握所选择二级学科的专业基础理论和研究方法;4具有独立开展科学研究的能力;5. 具有从事高等学校教学、科技管理或者综合发展的能力。二、研究方向1.理论物理(1)夸克物质物理:夸克物质的硬探针信号、夸克物质的退禁闭相变,手征相变、色超导相变、夸克物质的耗散性
2、质和集体效应、核环境中的微扰 QCD 理论、有限温度场论等。(2)高能碰撞唯象学:高能强子强子和核核碰撞机制、QGP 相变动力学、相变过程的逐事件关联与起伏、多奇异数重子的椭圆流、以及粒子产生模型和机制的研究。(3)统计物理与复杂系统:远离平衡态系统的相变动力学、复杂网络的统计性质、人类动力系统的标度律。(4)生物物理:基于生物分子(DNA、RNA、蛋白质等)之间的相互作用,用物理学的理论和方法研究生命现象和生命过程中的物理规律。在生物物理理论方向,开展基因表达动力学及调控网络理论,神经细胞与神经胶质细胞相互作用机理,蛋白质结构预测及分子动力学等研究。在分子生物物理实验方向,利用生物分子实验平
3、台,开展 miRNA 与 mRNA 相互作用机制和 miRNA 在生物分子信号通路中的调控等研究。(5)统计物理:非线性系统中噪声与噪声关联随机动力学理论,噪声关联在一些物理系统中产生的新效应。神经电生理现象中离子通道及其随机理论,细胞钙离子通道动力学及钙信号通路随机统计理论,可激发介质中的螺旋波的噪声效应。2. 粒子物理与原子核物理(1)粒子物理:从理论和实验上研究物质的最深层次结构及其相互作用规律。紧密结合能量前沿、亮度前沿和宇宙前沿的实验进展,系统开展重味物理、CP 对称性破缺、中微子质量起源机制和暗物质模型及其探测等方面的研究。(2)相对论重离子碰撞物理:高能核核碰撞的实验数据处理;高
4、能核核碰撞实验计算机模拟与物理分析;粒子探测技术与数据获取技术及核电子学核新型探测器研发;探寻夸克物质信号及新物理。(3)高能核天体物理:本研究方向开展的是核物理与致密天体物理的交叉研究,一方面基于核物理实验和理论,解释并模拟高能天体物理现象;另一方面基于天文数据,研究极端条件下核物理性质和限制相关的核参数(4)高能物理实验:高能碰撞,特别是高能核核碰撞的实验数据处理;高能核核碰撞实验计算机模拟与物理分析;粒子探测技术与数据获取技术及核电子学核新型探测器研发;硅像素探测器的性能仿真与设计,硅像素探测器读出系统设计,硅像素探测器在高能物理及其他方面的应用;探寻夸克物质信号及新物理。3.原子分子物
5、理(1)原子分子的纠缠动力学:研究原子与光场相互作用的量子纠缠动力学,相变,经典混沌和分叉对量子纠缠的影响;研究分子振转态的量子纠缠行为以及分子的量子计算;多原子分子的振转能级特征和代数计算。(2)原子分子结构与光谱:研究强微波场中的里德堡原子离化的理论, 少体原子分子系统理 论,量子信息与量子计算的理论。(3)冷原子物理:研究原子的光学冷却与囚禁,光对原子分子的力学效应,玻色-爱因斯坦凝聚等。(4)原子与光子相互作用:原子与光子相互作用的相干控制,原子相干对光传播、吸收与放大的作用,电磁感应透明,电磁场的非经典效应,量子起伏、量子噪声与量子跳跃,腔量子电动力学,光学双稳态与光学开关,局域场效
6、应,量子纠缠等。4.凝聚态物理(1)凝聚态物理理论:主要研究超冷原子的玻色爱因斯坦凝聚体的热力学和流体力性质;介观体系的输运理论;纳米线中磁畴壁动力学的理论研究;石墨烯中电子输运性质的理论研究;用第一性原理计算方法研究太阳能电池材料的能带结构及光电性质等。(2)低维材料物理:主要研究零维、一维、二维材料,如量子点、纳米管、石墨烯、硅烯等的生长规律及其化学物理机理,物理与应用性能等。(3)半导体光电子物理:主要研究半导体纳米结构材料在能量存储和转换,环境净化等应用中的光电转换、电子输运等物理问题。(4)纳米器件物理:主要研究纳米材料作为气体传感器、生物传感器、压电传感器等传感器件及其应用中的物理
7、问题。5.光学本学科点着重研究光的产生、传播、探测、变换以及与物质的相互作用原理、技术及应用。(1)量子光学和量子信息科学:研究光及其与物质相互作用的量子特性和非线性特性。研究光学微器件的原理,考察强光作用下原子的非经典性质。探讨这些量子特性在量子信息处理中的应用,设计量子通信、量子计算、量子测量的新方案。(2)激光光谱学:实验方面,在中红外和远红外波段研究大气化学、星际、生命科学等相关学科感兴趣的瞬态分子和分子离子的振转和纯转动高分辨光谱特性及结构。理论方面,采用量化计算方法计算实验中需观测的分子和分子离子的光谱结构。(3)激光物理学:研究激光的特性,提出产生新型激光的方案,并考察这些新型激
8、光在光与物质相互作用中的应用。6.无线电物理本学科是近代物理学、无线电电子学、光电子学、通信及相关技术的交叉学科,主要在电子工程、通信与信息工程领域内进行基础和应用研究。主要研究领域包括通信系统与网络、光电子技术、软件无线电技术、电磁理论与应用、信号检测与处理等。(1)研究方向名称:通信系统与网络。主要开展移动通信系统与技术方面的应用基础研究,网络多媒体信息传输和处理的理论和应用研究,光纤通信和无线光通信技术与系统的基础与应用研究等。(2)研究方向名称:光电子技术。研究光电子领域的相关理论、技术及应用,主要包括光电传感与测量、光通信、光电集成、光电信号处理与控制等。(3)研究方向名称:软件无线
9、电技术。软件无线电技术是用现代化软件来操纵、控制传统的“纯硬件电路”的无线通信技术。研究具有开放式无线架构的软件无线电技术和软件无线电信号处理技术,包括高速 A/D、D/A 技术、DSP 技术以及 FFT 算法,调制解调、信源/信道编码等算法及实现。(4)研究方向名称:电磁理论与应用。研究电磁波在复杂系统中的传播与散射特性、数值计算方法及应用;研究电磁超介质理论、仿真设计及在天线(阵)、吸波器和滤波器等射频、微波和光波器件中的应用。(5)研究方向名称:信号检测与处理。研究电子信号的获取、变换、传输、存储及数据处理,实现对各种物理量的检测及智能化控制。7. 天体粒子物理本学科是具有天文学与物理学
10、交叉与融合的研究特色,主要开展高能与核天体物理、中子星天体物理和引力与黑洞天体物理等方向的研究工作,把致密天体作为高能物理、粒子与核物理、引力物理等的天然实验室,着重探讨极端环境下致密物质性质、各种粒子物理过程和天体强引力物理规律,以期达到认识天体演化、高能天体物理现象、黑洞性质和宇宙学问题。一方面应用物理理论研究致密天体结构与演化,致密射线源辐射性质,中子星物理,黑洞热力学,另一方面利用高能天文观测限制相应物理参数,理解致密物质物理(如超导超流)、强场物理以及寻找奇特物质信号。天文学和基础物理学相互借鉴,实现观念、方法更新,在空间探测技术蓬勃发展的今天具有研究基础物理和宇宙天体问题的极大优势
11、,对于我们统一认识和理解宇宙及其组成、演化,物质起源及本质、高能天体现象和极端物理规律都具有重要意义。三、基准学制、学习年限与总学分博士生基准学制为三年,最长学习年限为六年,总学分 16-18 学分(18 学时/学分) 。其中课程学习 1 年(课程学习兼顾实践活动和学位论文的前期工作) ,论文工作时间一般不少于 2 年。博士生不允许提前毕业。四、课程设置实行学分制。总学分 16-18 学分,其中实践环节 4 学分,课程学习 1214 学分(包括公共课必修课程 6 学分、一级学科必修课程 2-5 学分、二级学科必修课程 2-5 学分、选修课程 2-5 学分) 。课程设置和教学进度按三年基准学制安
12、排,具体课程信息见物理学一级学科博士研究生课程设置表。硕博连读的研究生的学习年限一般为 57 年,总学分合并计算。博士生不允许提前毕业。五、实践环节在学期间参加课题组所有相关会议和讨论,每学期报告不少于 1 次,参加国内外学术会议,在学期间至少在专业会议上作学术报告 1 次。实践环节主要由指导老师进行指导和督促。研究生在提交学位论文之前必须提交上述具体环节的日期、地点和内容清单以及指导老师评定的成绩单。六、科学研究博士生在学期间要在导师指导下独立或者自主完成所选择专业或者相关交叉专业的专门课题研究,取得公认的成果,如发表具有代表性的学术论文,或者获得具有代表性的发明专利。以论文作为评判标准的,
13、按不低于华中师范大学关于博士研究生在学期间发表学术论文的暂行规定的具体标准执行。以下是重要要求。(1)针对性。针对所选择二级学科专业或与之相关的交叉学科领域中当前受关注的课题进行研究,致力于解决其中的某个或一部分问题。(2)创新性。要取得新的成果,如提出有新意的思想观点,取得新的实验结果,解释未曾解释的物理现象,或者对已有物理现象赋予新的解释,或建立有新特点的研究方法,等等。(3)工作量。大约有两年或者更多时间致力于专题研究工作。(4)全面性。博士生在从事科学研究各个环节进行综合能力作训练。七、学位论文博士研究生在完成科学研究后要提交学位论文并进行答辩。学位论文规范格式、学位论文标准、学位论文
14、的评审和答辩要符合国家学位条例、国家深化研究生教育改革的新要求、华中师范大学学位授予工作实施细则以及有关文件规定。八、培养方式采取课程学习和科学研究实践相结合,具体如下。1采用导师负责制。导师要管教管导,教书育人,既要发挥对研究生的学科前沿引导、科研方法指导、学术规范教导作用,也要发挥对研究生思想品德和科学伦理的教育作用。导师应为在学研究生的学术不端行为承担相应责任。2指导博士生参加教师的研究项目,注重系统科研训练。3积极搭建国际国内合作平台,努力推动联合培养和内外交流。4充分利用课题组集体指导的学术环境进行协同培养。九、必读文献博士研究生在读期间必读和选读的书目和期刊清单附于培养方案之后,具
15、体参见物理一级学科博士研究生文献阅读主要书目和期刊目录 。十、其他规定根据统一基本规格要求与因材施教相结合的原则,研究生须根据本学科研究生培养方案,在导师的指导下,结合本人实际,在入学后 5 个月内制订个人培养计划。个人培养计划完成与否,是审定研究生能否毕业和学位授予的基本依据。培养方案规定项目,均须按华中师范大学研究生培养考核及成绩管理办法进行考核。物理学一级学科博士研究生课程设置表课程类别 课程编号 课程名称 学时 学分 开课学期 备注中国马克思主义与当代 36 2 1公共必修课程第一外国语 72 4 12112207020001X 现代物理学研究方法 36 2 1一级学科必修课程 112
16、207020002X 物理学前沿选讲 36 2 1至少修读一门112207020101X 规范场论 54 3 1112207020102X 随机力与非线性系统 36 2 1112207020103X 非平衡统计 36 2 1理论物理(070201)生物物理复杂性学科112207020201X 相对论重离子碰撞物理 54 3 1112207020202X 高能物理实验方法 36 2 1粒子物理与原子核物理(070202)112207020301X 高等原子分子物理 36 2 1112207020302X 原子光学 36 2 1原子分子物理(070203)112207020501X 凝聚态物理前沿
17、进展 36 2 1 凝聚态物理(070205)112207020701X 高等量子光学 36 2 1112207020702X 激光光谱学 36 2 1112207020703X 高等激光物理学 36 2 1光学(070207)112207020801X 应用泛函分析 36 2 1112207020802X 高等电磁理论 36 2 1无线电物理(070208)11220702Z101X 天体物理理论 36 2 111220702Z102X 高能天体物理 36 2 1学位课程二级学科必修课程11220702Z103X 前沿文献评析 36 2 1天体粒子物理(070220)112207020003
18、X FORUM 高能物理前沿 36 2 2112207020004X 微扰 QCD 及在核物理中的应用 36 2 2选112207020005X 粒子探测技术 36 2 2112207020006X 高能物理数据分析技术 36 2 2112207020007X 热场理论及其应用 54 3 2112207020008X 广义相对论 54 3 2112207020009X 多粒子动力学 36 2 2112207020010X 粒子物理理论与唯象学 36 2 2112207020011X 生物分子计算机模拟 36 2 2112207020012X 系统生物学 36 2 2112207020013X
19、计算分子光谱学 36 2 2112207020302X 原子光学 36 2 2112207020014X 腔量子电动力学 36 2 2112107020101X 量子场论 36 2 2112207020015X 原子分子中的少体问题II36 2 2112207020016X 原子分子的量子关联动力学36 2 2112207020017X 原子分子中的数值计算方法 II36 2 2112207020018X 量子噪声 36 2 2112207020019X 凝聚态物理中的量子场论方法 36 2 2112207020020X 半导体光电子学 36 2 2112107020021X 光子学与光子技术
20、 36 2 2112207020022X 现代通信信号处理 36 2 2112207020023X 软件无线电技术 36 2 2112108090010X 电磁超介质 (metamaterial)36 2 2112207020024X 现代计算机网络 36 2 2修课程112207020025X 天体物理与宇宙学前沿 36 2 2说明:1.一级学科必修课程开设 2-3 门,至少必修 1 门,2-5 学分。2.每个二级学科必修课程开设 1-2 门,至少必修 1 门,2-5 学分。3.选修课程开设不少于 3 门。4.“备注”栏标明各门课程的修读对象。物理学一级学科博士研究生文献阅读主要书目和期刊目
21、录序号 著作或期刊的名称 作者或出版单位 备注(必读或选读)1 美国物理评论系列 美国物理学会2 Elsevier 物理期刊系列 Elsevier3 Nature 及其子刊 Nature publishing 4 Science AAAS5 中国科学,科学通报系列期刊 科学出版社各专业选读6 An introduction to stochastic processes and nonequilibrium statistical physicsHoracio Sergio Wio 理论物理和粒子物理与原子核物理必读7 Statistical physics II: nonequilibriu
22、m statistical mecahnicsRyogo Kubo, Morikazu Toda, Natsuki Hashitsume理论物理和粒子物理与原子核物理选读8 随机力与非线性系统 胡岗,上海科技教育出版社,19949 Handbook of stochastic methods C.W. Gardiner,Springer, 199710 Computer Simulation fo Liquids M. P. Allen and D. J. Tildesley, 198711 The art of Molecular Dynamics SimulationD. C. Rapap
23、ort, 200212 Phys. Rev. A26, (1982)1589 J.M.Sancho et al. 13 Phys. Rev. A38, (1988)5938 R.F.Fox, I.R.Gatland, R.Roy, G. Vemuri14 Phys. Rev. Lett. 78, (1997)775 A.S.Pikovsky, J.Kurths15 Phys. Rev. Lett. 71, (1993)807 G.Hu, et al.16 Phys. Rev. A26, (1982)1589 J.M.Sancho et al. 生物物理必读17 Stochastic Proce
24、sses in Physics and ChemistryN.G. van Kampen,North Holland,200718 Science 327, (2010) 1389-1391 G. Shinar, M. Feinberg生物物理选读19 PNAS 101, (2004) 4781 F. T. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang20 PNAS 107, (2010)10478 G. Y. Wang, C. H. Du, H. Chen, R. Simha, Y. W. Rong, Y. Xiao and C. Zeng21 Qua
25、ntum Optics M. O. Scully and M. S. Zubairy光学必读,原子分子物理选读22 高等原子分子物理学 徐克尊,科学出版社 原子分子必读23 Atom Optics Pierre Meystre24 Quantum Noise C. W. Gardiner and P. Zoller25 Handbook of Stochastic Methods C. W. Gardiner26 Cavity Quantum Electrodynamics Academic Press27 The Quantum Theory of Light Rodney Loudon28
26、 Molecular Symmetry and SpectroscopyP. R. Bunker29 Quantum Optics D. F. Walls and G. J. Mulburn30 Stastistical Methods in Quantum Optics H. J. Carmichael31 Quantum Computation and Quantum InformationMichael A. Nielsen and Isaac L. Chuang32 Atom-Photon Interactions Claude Cohen-Tannoudji, Jacques Dup
27、ont-Roc and Gilbert Grynberg33 近代量子光学导论 彭金生、李高翔34 Laser Spectroscopy, Basic Concepts and InstrumentationW.Demtroder35 分子高激发振动-非线性和混沌的理论 吴国祯原子分子物理和光学选读36 Applied Physics Letters AIP37 Nature Materials Nature publishing 38 Nature Nanotechnology Nature publishing凝聚态必读39 Advanced Materials John-Wiley40
28、Advanced Functional Materials John-Wiley41 Advanced Energy Materials John-Wiley42 Journal of American Chemical SocietyACS43 Nano letters ACS44 ACS Nano ACS45 Journal of Physical Chemistry C ACS46 Angew. Chem. Int. Ed. John-Wiley47 Journal of Material Chemistry John-Wiley48 ACS Applied Materials & In
29、terfaces ACS49 Nanotechnology IOP凝聚态选读50 微波与光电子学中的电磁理论 张克潜,李德杰51 Electromagnetic Wave Theory(1, 2,3) Kong, J. A.无线电物理必读52 IEEE 系列期刊 IEEE 学会53 IEEE 系列期刊 IEEE 学会54 IEE 系列期刊 IEE 学会55 Metamaterials Cui Tie Jun, Smith, David R., Liu, Ruopeng 56 Progress In Electromagnetic Research MIT Press, USA,57 Journal of Electromagnetic Waves Applications Taylor & Francis Group58 Electronic Letters Institute of Electrical Engineers无线电物理选读59 美国天文学会期刊系列 美国天文学会60 MNRAS, A&A 英国皇家天文学会、欧洲天文学会61 Elsevier 物理期刊涉及天体物理部分 Elsevier天体粒子物理选读