精选优质文档-倾情为你奉上极化恒等式在向量问题中的应用目标1:阅读材料,了解极化恒等式的由来过程,掌握极化恒等式的两种模式,并理解其几何意义阅读以下材料:M图1 (1) (2)(1)(2)两式相加得:结论:定理:平行四边形对角线的平方和等于两条邻边平方和的两倍.思考1:如果将上面(1)(2)两式相减,能得到什么结论呢? 极化恒等式几何意义:向量的数量积表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的.ABCM即:(平行四边形模式)思考:在图1的三角形ABD中(M为BD的中点),此恒等式如何表示呢?因为,所以(三角形模式)目标2-1:掌握用极化恒等式求数量积的值例1.(2012年浙江文15)在中,是的中点,则_ .解:因为是的中点,由极化恒等式得:=9-= -16【小结】运用极化恒等式的三角形模式,关键在于取第三边的中点,找到三角形的中线,再写出极化恒等式。目标检测目标2-2:掌握用极化恒等式求数量积
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。