精选优质文档-倾情为你奉上对偶单纯形法与单纯形法对比分析1教学目标:通过对偶单纯形法的学习,加深对对偶问题的理解2 教学内容:1) 对偶单纯形法的思想来源2) 对偶单纯形法原理3 教学进程:1) 讲述对偶单纯形法解法的来源: 所谓对偶单纯形法,就是将单纯形法应用于对偶问题的计算,该方法是由美国数学家C.莱姆基于1954年提出的,它并不是求解对偶问题解的方法,而是利用对偶理论求解原问题的解的方法。2) 为什么要引入对偶单纯形法: 单纯形法是解线性规划的主要方法,对偶单纯形法则提高了求解线性规划问题的效率,因为它具有以下优点: (1)初始基解可以是非可行解, 当检验数都为负值时, 就可以进行基的变换, 不需加入人工变量, 从而简化计算; (2)对于变量多于约束条件的线性规划问题,用对偶单纯形法可以减少计算量,在灵敏度分析及求解整数规划的割平面法中,有时适宜用对偶规划单纯形法。 由对偶问题的基本性质可以知道,线性规划的原问题及其对偶问题之间存在一组互补的基解,其中原问题的松弛变量对应对偶问题的变量,