1、新型光伏电池 MPPT 控制方案 太阳能光伏电池(简称光伏电池),用于把太阳的光能直接转化为电能。目前地面光伏系统大量使用的是以硅为基底的硅太阳能电池,可分为单晶硅、多晶硅、非晶硅太阳能电池。在能量转换效率和使用寿命等综合性能方面,单晶硅和多晶硅电池优于非晶硅电池。多晶硅比单晶硅转换效率低,但价格更便宜。 电力技术专业网讯:按照应用需求,太阳能电池经过一定的组合,达到一定的额定输出功率和输出的电压的一组光伏电池,叫光伏组件。根据光伏电站大小和规模,由光伏组件可组成各种大小不同的阵列。光伏组件,采用高效率单晶硅或多晶硅光伏电池、高透光率钢化玻璃、tedlar、抗腐蚀铝合多边框等材料,使用先进的真
2、空层压工艺及脉冲焊接工艺制造。即使在最严酷的环境中也能保证长的使用寿命。组件的安装架设十分方便。组件的背面安装有一个防水接线盒,通过它可以十分方便地与外电路连接。对每一块太阳电池组件,都保证 20 年以上的使用寿命。太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应工作的薄膜式太阳能电池为主流,而以光化学效应原理工作的太阳能电池则还处于萌芽阶段。太阳光照在半导体 p-n结上,形成新的空穴- 电子对。在 p-n 结电场的作用下,空穴由 n 区流向 p 区,电子由 p 区流向 n 区,接通电路后就形成电流。1 光伏电池模型及输出特性1.1 光伏电池的数学模型在光照强度和环
3、境温度一定时,光伏电池既非恒压源,也非恒流源,也不可能为负载提供任意大的功率,是一种非线性直流电源。其等效电路如图 1 所示。图 1 中,UJ 为 PN 结电压, Id 为光伏电池在无光照时的饱和电流,Id=IoEU+IRS ) nKT-1。一个理想的太阳能电池,由于串联电阻 RS 很小,旁路电阻 Rsh 很大,所以在进行理想电路的计算时,它们均可忽略不计。由图 1 的太阳能光伏电池等效电路得出: I=Iph-I0 eq(U+IRS) nKT -1- U+IR R s sh (1 )式中, I 为光伏电池输出电流;I0 为 PN 结的反向饱和电流;Iph 为光生电流 ;U 为光伏电池输出电压;
4、q为电子电荷,q=1.6 伊 10-19 C;k 为波尔兹曼常数,k=1.38 伊 10-23 J/K;T为热力学温度;n 为 N 结的曲线常数;Rs,Rsh 为光伏电池的自身固有电阻。图 1 光伏电池等效电路1.2 光伏电池电气特性光伏电池的输出特性主要通过 I-U 和 P-U 特性曲线来加以体现,如图 2 所示。图 2 光伏电池的 I-U 和 P-U 特性曲线从图 2 中可以看出,光伏电池的输出特性曲线与工作环境的光照、温度等因素有着密切的关系,且具有明显的非线性特性,在一定的光照及温度条件下,电池具有唯一的最大功率点,所以为了实现光伏发电系统的输出功率的最大化,需要对光伏电池的输出功率进
5、行最大功率点跟踪。2 MPPT 控制方法的对比分析MPPT 控制器的全称“最大功率点跟踪”(Maximum Power Point Tracking)太阳能控制器,是传统太阳能充放电控制器的升级换代产品。所谓最大功率点跟踪,即是指控制器能够实时侦测太阳能板的发电电压,并追踪最高电压电流值(VI),使系统以最高的效率对蓄电池充电。下面我们用一种机械模拟对比的方式来向大家解释 MPPT 太阳能控制器的基本原理。要想给蓄电池充电,太阳板的输出电压必须高于电池的当前电压,如果太阳能板的电压低于电池的电压,那么输出电流就会接近 0.所以,为了安全起见,太阳能板在制造出厂时,太阳能板的峰值电压(Vpp)大
6、约在 17V 左右,这是以环境温度为 25C 时的标准设定的。这样设定的原因,(有意思的是,不同于我们普通人的主观想象,下面的结论可能会让我们吃惊)在于当天气非常热的时候,太阳能板的峰值电压 Vpp 会降到 15V 左右,但是在寒冷的天气里,太阳能的峰值电压 Vpp 可以达到 18V!国内外研究 MPPT 的算法很多,比较成熟的有恒定电压法、扰动观测法/爬山法、电导增量法等。恒定电压法( CVT)就是将光伏电压固定在最大功率点附近,该控制方法简单容易实现,初期投入少,系统工作电压具有良好的稳定性,但是跟踪精度差,忽略了温度对光伏电池开路电压的影响,测量开路电压要求光伏阵列断开负载后再测量,对外
7、界条件的适应性差,环境变化时不能自动跟踪到 MPP,造成了能量损失。扰动观测法(P当距最大功率点比较近时,步长取较小,慢慢接近最大功率点;当非常接近最大功率点时,稳定在该点工作。该变步长法能克服爬山法在最大功率点附近振荡的缺点。改进爬山法控制流程图如图 3 所示。4 改进爬山法仿真分析光伏发电系统最大功率点跟踪器采用 BooST图 3 改进爬山法控制流程图DC/DC 变换电路来实现,通过调节 PWM 波的占空比控制功率的输出。在 Boost 变换器的电路中串入 MPPT 控制系统,利用Matlab/simulink 搭建仿真模型,编写 S 函数作为 MPPT 的控制模块,对光伏电池的最大功率点
8、进行追踪,MPPT 仿真模型如图 4 所示。图 4 MPPT 仿真模型对短路电流 3.2 A、开路电压 22 V、最大功率点电流 2.94 A 和最大功率点电压 17 V 的光伏电池模块组成 17 伊 1 的光伏电池阵列进行仿真,即其短路电流和光伏电池阵列的开路电压分别为 3.2 V 和 374 V,光伏电池阵列最大功率点电流和最大功率点电压分别为 2.94 A 和 289 V。光伏阵列输入光强为 1 000 W/m2,温度为 25 益。为了形成对比,对不加 MPPT 控制器的光伏发电系统、加爬山法 MPPT 控制器的光伏发电系统和加改进爬山法 MPPT 控制器的光伏发电系统分别进行仿真实验,
9、仿真结果如图 5 所示。图 5 MPPT 仿真图形由图 5 可见,未加 MPPT 控制的光伏电池输出功率振荡范围很大,输出功率很不稳定。爬山法 MPPT 控制系统能较好地跟踪到最大功率点,但是在最大功率点处还有一定振荡。改进爬山法的 MPPT 控制系统有效地改善了爬山法的缺点,在最大功率点附近振荡小,跟踪速度也比较快,提高最大功率跟踪的效率。5 结论综上所述,通过对几种常见的 MPPT 控制方法的比较研究,可以看出,恒定电压法控制简单且易实现,但跟踪精度差,在外界环境变化时,会产生较大误差;爬山法简单实用、跟踪效率高,但在最大功率点附近会发生振荡,存在误差;电导增量法虽然跟踪快速稳定,但由于实际的光伏发电系统中电压和电流的检测所依赖的传感器精度的有限性,