精选优质文档-倾情为你奉上 函数的单调性及典型习题一、函数的单调性1、定义:(1)设函数的定义域为A,区间MA,如果取区间M中的任意两个值,当改变量时,都有,那么就称函数在区间M上是增函数,如图(1)当改变量时,都有,那么就称函数在区间M上是减函数,如图(2)注意:函数单调性定义中的x1,x2有三个特征,一是任意性,二是有大小,三是同属于一个单调区间2、巩固概念:1、 定义的另一种表示方法如果对于定义域I内某个区间D上的任意两个自变量x1,x2,若即,则函数y=f(x)是增函数,若即,则函数y=f(x)为减函数。判断题:已知因为,所以函数是增函数若函数满足则函数在区间上为增函数若函数在区间和上均为增函数,则函数在区间上为增函数因为函数在区间上都是减函数,所以在上是减函数.通过判断题,强调几点:单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也