精选优质文档-倾情为你奉上解线性方程组的列主元素高斯消去法和LU分解法一、实验目的:通过数值实验,从中体会解线性方程组选主元的必要性和LU分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。二、实验内容:解下列两个线性方程组(1)(2)三、实验要求:(1) 用你熟悉的算法语言编写程序用列主元高斯消去法和LU分解求解上述两个方程组,输出Ax=b中矩阵A及向量b, A=LU分解的L及U,detA及解向量x.(2) 将方程组(1)中系数3.01改为3.00,0.987改为0.990,用列主元高斯消去法求解变换后的方程组,输出列主元行交换次序,解向量x及detA,并与(1)中结果比较。(3) 将方程组(2)中的2.改为2.1,5.改为5.9,用列主元高斯消去法求解变换后的方程组,输出解向量x及detA,并与(1)中的结果比较。(4)用MATLAB的内部函数inv求出系数矩阵的逆矩阵,再输入命令x=inv(A)*b,即可求出上述各个方程组的解,并与列主元高斯消去法和LU分解法求出的解进行比较,体会选主元的方法具有良好的数值稳定性。用