精选优质文档-倾情为你奉上(一) 主要知识及主要方法:设函数在处附近有定义,当自变量在处有增量时,则函数相应地有增量,如果时,与的比(也叫函数的平均变化率)有极限即无限趋近于某个常数,我们把这个极限值叫做函数在处的导数,记作,即在定义式中,设,则,当趋近于时,趋近于,因此,导数的定义式可写成.导数的几何意义:导数是函数在点的处瞬时变化率,它反映的函数在点处变化的快慢程度. 它的几何意义是曲线上点()处的切线的斜率.因此,如果在点可导,则曲线在点()处的切线方程为 导函数(导数):如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数,也可记作,即函数在处的导数就是函数在开区间上导数在处的函数值,即.所以函数在处的导数也记作可导: 如果函数在开区间内每一点都有导数,则称函数在开区间内可导可导与连续的关系:如果函数在点处可导,那么函数在点处连续,反之不成立. 函数具有连续性是函数具有可导性的必要条件,而不是充分条件.求函数的导数的一般步骤