精选优质文档-倾情为你奉上二次函数应用题专题训练知识要点:二次函数的一般式()化成顶点式,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值)即当时,函数有最小值,并且当,;当时,函数有最大值,并且当,如果自变量的取值范围是,如果顶点在自变量的取值范围内,则当,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内随的增大而增大,则当时,当时,;如果在此范围内随的增大而减小,则当时,当时,在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。求最值的问题的方法归纳起来有以下几点:1运用配方法求最值;2构造一元二次方程,在方程有解的条件下,利用判别式求最值;3建立函数模型求最值;4利用基本不等式或不等分析法求最值例1:求下列二次函数的最值:(1)求函数的最值解:当时,有最小值,无最