储能电站总体技术方案.DOC

上传人:国*** 文档编号:953779 上传时间:2018-11-09 格式:DOC 页数:19 大小:225KB
下载 相关 举报
储能电站总体技术方案.DOC_第1页
第1页 / 共19页
储能电站总体技术方案.DOC_第2页
第2页 / 共19页
储能电站总体技术方案.DOC_第3页
第3页 / 共19页
储能电站总体技术方案.DOC_第4页
第4页 / 共19页
储能电站总体技术方案.DOC_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、储能电站总体技术方案2011-12-20 目录1.概述 .22.设计标准 .33.储能电站(配合光伏并网发电)方案 .63.1 系统架构 .63.2 光伏发电子系统 .73.3 储能子系统 .73.3.1 储能电池组 .73.3.2 电池管理系统(BMS) .83.4 并网控制子系统 .113.5 储能电站联合控制调度子系统 .134.储能电站(系统)整体发展前景 .151.概述大容量电池储能系统在电力系统中的应用已有 20 多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。电池储 能系统在新能源并网中的应用,国外也已开展了一定的研究。上世纪 90 年代末德国在 Herne 1MW

2、 的光伏电站和 Bocholt 2MW 的风电场分别配置了容量 为 1.2MWh 的电池储能系统,提供削峰、不中断供电和改善 电能质量功能。从 2003 年开始, 日本在Hokkaido 30.6MW 风电场 安装了 6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动 。2009 年英国 EDF 电网将 600kW/200kWh 锂离子电池储能系统配置在东部一个 11KV 配电网 STATCOM 中,用于潮流和电压控制,有功和无功控制。总体来说,储能电站(系统)在电网中的应用目的主要考虑“ 负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”

3、等几大功能应用。比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样 就减少了电能的浪 费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。而 储能 电站的绿色优势则主要体现在:科学安全,建设周期短; 绿色环保,促 进环境友好;集约用地,减少 资源消耗等方面。2.设计标准GB 21966-2008 锂原电池和蓄电池在运输中的安全要求GJB 4477-2002 锂离子蓄 电池组通用规范QC/T 743-2006 电动汽车用锂离子蓄电池GB/T 12325-2008 电能质量供

4、电电压偏差GB/T 12326-2008 电能质量电压波动和闪变GB/T 14549-1993 电能质量公用电网谐波GB/T 15543-2008 电能质量三相电压不平衡GB/T 2297-1989 太阳光伏能源系 统术语DL/T 527-2002 静态继电保护装置逆变电源技术条件GB/T 13384-2008 机电产品包装通用技术条件GB/T 14537-1993 量度继电器和保护装置的冲击与碰撞试验GB/T 14598.27-2008 量度继电器和保护装置 第 27 部分:产品安全要求DL/T 478-2001 静态继电保护及安全自动装置通用技术条件GB/T 191-2008 包装储运图示

5、标志GB/T 2423.1-2008 电工电子产品环境试验 第 2 部分:试验方法 试验A:低温GB/T 2423.2-2008 电工电子产品环境试验 第 2 部分:试验方法 试验B:高温GB/T 2423.3-2006 电工电子产品环境试验 第 2 部分:试验方法 试验Cab:恒定湿热试验GB/T 2423.8-1995 电工电子产品环境试验 第 2 部分:试验方法 试验Ed:自由跌落GB/T 2423.10-2008 电工电子产品环境试验 第 2 部分:试验方法 试验 Fc:振 动(正弦)GB 4208-2008 外壳防护等级(IP 代码)GB/T 17626 -2006 电磁兼容 试验和

6、测量技术GB 14048.1-2006 低压开关设备和控制设备 第 1 部分:总则GB 7947-2006 人机界面标志标识的基本和安全规则 导体的颜色或数字标识GB 8702-88 电磁辐射防护规定DL/T 5429-2009 电力系统设计技术规程DL/T 5136-2001 火力发电厂、变电所二次接线设计技术规程DL/T 620-1997 交流电气装置的过电压保护和绝缘配合DL/T 621-1997 交流电气装置的接地GB 50217-2007 电力工程电缆设计规范GB 2900.11-1988 蓄电池名词术语IEC 61427-2005 光伏系统(PVES )用二次电池和蓄电池组 一般要

7、求和试验方法Q/GDW 564-2010 储能系统接入配电网技术规 定QC/T 743-2006 电动汽车用锂离子蓄电池GB/T 18479-2001 地面用光伏(PV)发电系统概述和导则GB/T 19939-2005 光伏系统并网技术要求GB/T 20046-2006 光伏(PV)系统电网接口特性GB 2894 安全 标志(neq ISO 3864:1984)GB 16179 安全标志使用导则GB/T 17883 0.2S 和 0.5S 级静止式交流有功电度表DL/T 448 能计量装置技术 管理规定DL/T 614 多功能电能表DL/T 645 多功能电能表通信 协议DL/T 5202 电

8、 能量计量系 统设计技术规程SJ/T 11127 光伏(PV)发电系统过电压保护导则IEC 61000-4-30 电磁兼容第 4-30 部分试验和测量技术电能质量IEC 60364-7-712 建筑物 电气装置第 7-712 部分:特殊装置或场所的要求 太阳光伏(PV)发电系统3.储能电站(配合光伏并网发电)方案3.1 系统架构在本方案中,储能电站(系统)主要配合光伏并网发电应用,因此,整个系 统是包括光伏组件阵列、光伏控制器、电池组、电池管理系 统(BMS)、逆变器以及相应的储能电站联合控制调度系统等在内的发电系统。系统架构图如下:储能电站(配合光伏并网发电应用)架构图1、光伏 组件阵 列利

9、用太阳能电池板的光伏效应将光能转换为电能,然后对锂电池组充电,通过逆变器将直流电转换为交流电对负载进行供电; 2、智能控制器根据日照 强度及负载的变化,不断对蓄电池组的工作状态进行切换和调节:一方面把调整后的电能直接送往直流或交流负载。另一方面把多余的电能送往蓄电池组存储。 发电量不能满足负载需要时,控制器把蓄电池的电能送往负载,保证了整个系 统工作的连续性和稳定性; 4、并网逆变系 统由几台逆变器组成,把蓄电池中的直流电变成标准的 380V市电接入用户侧低压电网或经升压变压器送入高压电网。 5、锂电 池组在系 统中同时起到能量调节和平衡负载两大作用。它将光伏发电系统输出的电能转化为化学能储存

10、起来,以备供电不足时使用。3.2 光伏发电子系统略。3.3 储能子系统3.3.1 储能电池组(1)电池选型原则作为配合光伏发电接入,实现削峰填谷、 负荷补偿,提高电能质量应用的储能电站, 储能电池是非常重要的一个部件,必 须满足以下要求: 容易实现多方式组合,满足较高的工作电压和较大工作电流; 电池容量和性能的可检测和可诊断,使控制系统可在预知电池容量和性能的情况下实现对电站负荷的调度控制; 高安全性、可靠性:在正常使用情况下,电池正常使用寿命不低于 15 年;在极限情况下,即使发生故障也在受控范围,不 应该发生爆炸、燃 烧等危及电站安全运行的故障; 具有良好的快速响应和大倍率充放电能力,一般

11、要求 5-10 倍的充放电能力; 较高的充放电转换效率; 易于安装和维护; 具有较好的环境适应性,较宽的工作温度范围; 符合环境保护的要求,在电池生产、使用、回收 过程中不产生对环境的破坏和污染;(2) 主要电池类型比较表 1、几种 电 池性能比较钠硫电池 全钒液流电池 磷酸铁锂电池 阀控铅酸电池现有应用规模等级100kW34MW 5kW6MW kWMW kWMW比较适合的应用场合大规模削峰填谷、平抑可再生能源发电波动大规模削峰填谷、平抑可再生能源发电波动可选择功率型或能量型,适用范围广泛大规 模削峰填谷、平抑可再生能源发电波动安全性 不可过 充电;钠 、硫的渗漏,存在潜在安全隐患安全 需要单

12、体监控,安全性能已有较大突破安全性可接受,但废旧铅酸蓄电池严重污染土壤和水源能量密度 100-700 Wh/kg - 120-150Wh/kg 30-50 Wh/kg倍率特性 5-10C 1.5C 5-15C 0.1-1C转换效率 95% 70% 95% 80%寿命 2500 次 15000 次 2000 次 300 次成本 23000 元/kWh 15000 元/kWh 3000 元/kWh 700 元/kWh资源和环保资源丰富;存在一定的环境风险资源丰富 资源丰富;环境友好资源丰富;存在一定的环境风险MW 级系统占地150-200 平米/MW800-1500 平米/MW100-150 平米

13、/MW(h)150-200 平米 MW关注点 安全、一致性、成本可靠性、成熟性、成本一致性 一致性、寿命(3)建议方案从初始投资成本来看,锂离子电池有较强的竞争力,钠硫电池和全钒液流电池未形成产业化,供应渠道受限,较昂贵。从运营和 维护成本来看,钠硫需要持续供热,全 钒液流电池需要 泵进行流体控制,增加了运营成本,而 锂电池几乎不需要维护。根据国内外储能 电站应用现状和电池特点,建议储能电站电池选型主要为磷酸铁锂电池。3.3.2 电池管理系统(BMS)(1)电池管理系 统的要求在储能电站中,储能电池往往由几十串甚至几百串以上的电池组构成。由于电池在生产过程和使用过程中,会造成 电池内阻、电压、容量等参数的不一致。这种差异表现为电池组充满或放完时串联电芯之间的电压不相同,或能量的不相同。这 种情况会导致部分 过充,而在放电过程中电压过低的电芯有可能被过放,从而使电池组的离散性明显增加,使用 时更容易发生过充和过放现象,整体容量急剧下降,整个电池组表现 出来的容量为电池组中性能最差的电池芯的容量,最终导致电池组提前失效。因此,对于磷酸铁锂电池电池组而言,均衡保 护电路是必须的。当然, 锂电池的电池管理系统不仅仅是电 池的均衡保护,还有更多的要求以保证锂电池储能系统稳定可靠的运行。(2)电池管理系 统 BMS 的具体功能

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 重点行业资料库 > 1

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。