精选优质文档-倾情为你奉上“齐次式”法解圆锥曲线斜率有关的顶点定值问题定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k和m的一次函数关系式,代入直线方程即可。技巧在于:设哪一条直线?如何转化题目条件?圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。下面总结圆锥曲线中几种常见的几种定点模型:例题、(07山东)已知椭圆C:若与轴不垂直的直线与曲线C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证:直线过定点,并求出该定点的坐标。解法一(常规法):设,由得,以AB为直径的圆过椭圆的右顶点且,(*),(*)整理得:,解得:,且满足当时,直线过定点与已知矛盾;当时,直线过定点综上可知,直线过定点,定点坐标为方法总结:本题为“弦对定点张