高等数学 第二十讲 1第十一章 积分学 定积分二重积分三重积分 积分域 区间域 平面域 空间域 曲线积分 曲线域 曲面域 曲线积分 曲面积分 对弧长的曲线积分 对坐标的曲线积分 对面积的曲面积分 对坐标的曲面积分 曲面积分 曲线积分与曲面积分 2第一节 一、对弧长的曲线积分的概念与性质 二、对弧长的曲线积分的计算法 对弧长的曲线积分 第十一章 二、对弧长的曲线积分的应用 3一、对弧长的曲线积分的概念与性质 假设曲线形细长构件在空间所占 弧段为AB , 其线密度为 “大化小, 常代变, 近似和, 求极限” 可得 为计算此构件的质量, 1.引例: 曲线形构件的质量 采用 4设 是空间中一条有限长的光滑曲线, 义在 上的一个有界函数, 都存在, 上对弧长的曲线积分, 记作 若通过对 的任意分割 局部的任意取点, 2.定义 下列“乘积和式极限” 则称此极限为函数 在曲线 或第一类曲线积分. 称为被积函数, 称为积分弧段 . 曲线形构件的质量 和对 5如果 L 是 xoy 面上的曲线弧 , 如果 L 是闭曲线 , 则记为 则定义对弧长的曲线 积分为 思考: (1) 若在 L 上 f (x, y)