精选优质文档-倾情为你奉上第十八章 组合一、方法与例题1抽屉原理。例1 设整数n4,a1,a2,an是区间(0,2n)内n个不同的整数,证明:存在集合a1,a2,an的一个子集,它的所有元素之和能被2n整除。证明 (1)若na1,a2,an,则n个不同的数属于n-1个集合1,2n-1,2,2n-2,n-1,n+1。由抽屉原理知其中必存在两个数ai,aj(ij)属于同一集合,从而ai+aj=2n被2n整除;(2)若na1,a2,an,不妨设an=n,从a1,a2,an-1(n-13)中任意取3个数ai, aj, ak(ai,aj0)不被n整除,考虑n个数a1,a2,a1+a2,a1+a2+a3,a1+a2+an-1。)若这n个数中有一个被n整除
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。