精选优质文档-倾情为你奉上第十四章 极限与导数一、 基础知识1极限定义:(1)若数列un满足,对任意给定的正数,总存在正数m,当nm且nN时,恒有|un-A|成立(A为常数),则称A为数列un当n趋向于无穷大时的极限,记为,另外=A表示x大于x0且趋向于x0时f(x)极限为A,称右极限。类似地表示x小于x0且趋向于x0时f(x)的左极限。2极限的四则运算:如果f(x)=a, g(x)=b,那么f(x)g(x)=ab, f(x)g(x)=ab, 3.连续:如果函数f(x)在x=x0处有定义,且f(x)存在,并且f(x)=f(x0),则称f(x)在x=x0处连续。4最大值最小值定理:如果f(x)是闭区间a,b上的连续函数,那么f(x)在a,b上有最大值和最小值。5导数:若函数f(x)在x0附近有定义,当自变量x在x0处取得一个增量x时(x充分小),因变量y也随之取得增量y(y=f(x0+x)-f(x0).若存在,则称f(x)在x0处可导,此极限值称为f(x)在点x0处的导数(或变化率),记作(x0