焦半径公式的证明(共4页).doc

上传人:晟*** 文档编号:9848475 上传时间:2021-12-22 格式:DOC 页数:4 大小:60KB
下载 相关 举报
焦半径公式的证明(共4页).doc_第1页
第1页 / 共4页
焦半径公式的证明(共4页).doc_第2页
第2页 / 共4页
焦半径公式的证明(共4页).doc_第3页
第3页 / 共4页
焦半径公式的证明(共4页).doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

精选优质文档-倾情为你奉上焦半径公式的证明【寻根】 椭圆的根在哪里?自然想到椭圆的定义:到两定点F1,F2(|F1F2|=2c)距离之和为定值2a(2a2c)的动点轨迹(图形).这里,从椭圆的“根上”找到了两个参数c和a.第一个参数c,就确定了椭圆的位置;再加上另一个参数a,就确定了椭圆的形状和大小.比较它们的“身份”来,c比a更“显贵”.遗憾的是,在椭圆的方程里,却看不到c的踪影,故有人开玩笑地说:椭圆方程有“忘本”之嫌.为了“正本”,我们回到椭圆的焦点处,寻找c,并寻找关于c的“题根”.一、 用椭圆方程求椭圆的焦点半径公式数学题的题根不等同数学教学的根基,数学教学的根基是数学概念,如椭圆教学的根基是椭圆的定义.但是在具体数学解题时,不一定每次都是从定义出发,而是从由数学定义引出来的某些已知结论(定理或公式)出发,如解答椭圆问题时,经常从椭圆的方程出发.【例1】 已知点P(x,y)是椭圆上任意一点,F1(-c,0)和F2(c,0)是椭圆的两个焦点.求证:|PF1|=a+;|PF2|=a -.【分析】

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。