精选优质文档-倾情为你奉上调和点列研究图形在射影变换下不变性的一个几何学分支。射影几何学产生的最初动力,来自为了帮助绘画而对透视进行的研究。在17世纪,G.德扎格和B.帕斯卡建立了射影几何学中著名的定理。后来在19世纪,又经过J.V.彭赛列、J.施泰纳、K.G.C.von施陶特、A.F.麦比乌斯、A.凯莱等几何学家的工作,使射影几何学得到蓬勃的发展,达到鼎盛的时期。定义:直线上依次四点A、B、C、D满足,则称A、B、C、D四点构成调和点列。其中A、C和B、D称为调和共轭。性质1:如图,A为圆O外一点,AB、AC为圆O的切线,ADEF截圆O与D、F,交BC与点E 则A、D、E、F四点调和。证明: 又而故成立。得证!推广:如图,椭圆外一点A关于椭圆的两条切线的切点所在的直线为BC(此直线也叫极线),过A的任意一条直线ADEF截椭圆于D、F,交BC与E 则A、D、E、F成调和点列。证明:暂略。性质2:证明:而即证。推论:已知A、B、C、D四点调和,O为A、